Journal Information
Vol. 30. Issue 7.
Pages 331-338 (August - September 1994)
Share
Share
Download PDF
More article options
Vol. 30. Issue 7.
Pages 331-338 (August - September 1994)
Full text access
Validez de un sistema de registro portátil (MESAM IV) para el diagnóstico del síndrome de apnea del sueño
Validity of portable recording (MESAM IV) for diagnosis of sleep apnea syndrome (SAS)
Visits
4040
J. Durán Cantolla*,1, S. Esnaola Sukia**, R. Rubio Aramendi***, C. Egea Santaolalla*
* Sección de Neumología. Unidad de Sueño. Vitoria-Gasteiz
** Dirección de Información, Docencia e Investigación Sanitaria. Departamento de Sanidad. Gobiernno Vasco
*** Servicio de Neurofisiología Clínica. Hospital de Txagorritxu. Vitoria-Gasteiz
This item has received
Article information

La alta prevalencia del síndrome de apnea del sueño (SAS) y el elevado coste de la polisomnografía (PLS) precisan el desarrollo de sistemas de identificación del SAS más baratos. El MESAM IV es un equipo ambulatorio que registra las variaciones de la saturación de oxígeno (SO2), de la frecuencia cardíaca (FC) y la presencia de ronquidos (RQ). El aparato es capaz de hacer una lectura automática y también puede realizarse de forma manual según el índice de eventos (IE) interrelacionando las tres variables a través de un registro gráfico. Se estudiaron de forma simultánea, con PLS y MESAM IV, 51 sujetos enviados a la unidad de sueño desde la consulta externa de neumología por sospecha clínica de SAS. La PLS se interpretó de forma manual en épocas de 30 segundos según las recomendaciones de la American Thoracic Society, considerando criterio de SAS un índice de apnea/hipopnea (IAH) ≥ 10 por hora de sueño. Hubo 32 sujetos (63%) que tuvieron SAS por la PLS. El grado de concordancia entre el análisis automático de SO2, FC y RQ con el IAH fue sólo moderado (coeficiente de correlación intraclase -CCI- de 0,50, 0,40 y 0,53, respectivamente) e inferior al análisis manual con el IE (CCI de 0,77). El estudio de eficacia diagnóstica en términos de sensibilidad, especificidad, valor predictivo positivo (VPP) y valor predictivo negativo (VPN) para el análisis automático fue: SO2 (sensibilidad, 94%; especificidad, 26%; VPP, 68%, y VPN, 71%); FC (sensibilidad, 59%; especificidad, 58%; VPP, 70%, y VPN, 46%); RQ (sensibilidad, 84%; especificidad, 26%; VPP, 66%, y VPN, 50%). Para el análisis manual (IE) los resultados fueron más válidos: sensibilidad, 100%; especificidad, 84%; VPP, 91%, y VPN, 100%. Por otra parte, al excluir los pacientes con limitación crónica al flujo aéreo (LCFA) más que leve, causa potencial de falsos positivos, los resultados mejoraron: sensibilidad, 100%; especificidad, 91%; VPP, 96%, y VPN, 100%. Estos resultados muestran que el MESAM IV es de gran ayuda en el diagnóstico de SAS y permite seleccionar mejor la población a la que va a someterse a la PLS.

The development of inexpensive tools for diagnosing sleep apnea syndrome (SAS) is a result of the high prevalence of this condition and of the high cost of polysomnograms (PS). MESAM IV is a portable device that records changes in oxigen saturation (S02), heart rate (HR) and snoring (S). Readings can be automatic or manual, the latter in function of an events index (El), with a graph of the three variables generated. We carried out a simuitaneous study of 51 subjects suspected of having SAS who were referred to the sleep unit by the pneumology outpatient clinic. PS was interpreted manually at 30-sec intervals as recommended by the American Thoracic Society. An apnea/hypoapnea index (AHI) ≥ 10//hour of sleep was used as the cutoff point for SAS. Thirty-two (63%) subjects were found to have SAS as indicated by PS. The rate of agreement between AHI and automatic analysis of S02, HR and S was only moderate (intra-group correlation coefficients -ICC- of 0.50, 0.40, and 0.53, respectively) and was inferior to manual analysis with EI (ICC of 0.77). Assessment of diagnostic efficacy of automatic analysis in terms of sensitivity (SEN), specificity (SPE), positive predictive value (PPV) and negative predictive value (NPV) yielded the following results: S02 (SEN 94%, SPE 26%, PPV 68% and NPV 71%), HR (SEN 59%, SPE 58%, PPV 70%, NPV 46%); S (SEN 84%, SPE 26%, PPV 66%, NPV 50%). Manual analysis (EI) gave more valid results (SEN 100%, SPE 84%, PPV 91%, NPV 100%). If patients with chronic obstructive lung disease are excluded, however, the results for automatic analysis improve: SEN 100%, SPE 91%, PPV 96%, NPV 100%. These results show that MESAM IV is of great help in diagnosing SAS, allowing better screening for identifying candidates for PS.

Full text is only aviable in PDF
Bibliografía
[1.]
T. Gislason, M. Almqvist, G. Erikson, A. Taube, G. Boman.
Prevalence of sleep apnea syndrome among swedish men. An epidemiological study.
J Clin Epidemiol, 41 (1988), pp. 571-576
[2.]
P. Lavie.
Incidence of sleep apnea in a presumably healthy working population.
Sleep, 6 (1983), pp. 312-318
[3.]
J. He, M.H. Kryger, F.J. Zorick, W. Conway, T. Roth.
Mortality and apnea index in obstructive sleep apnea. Experience in 385 male patients.
Chest, 94 (1988), pp. 9-14
[4.]
C.E. Sullivan, F.G. Issa, M. Bertho-Jones, et al.
Home treatment of obstructive sleep apnea with continuous positive airway pressure aplied through nose mask.
Bull Euro Physiopatol Respir, 20 (1984), pp. 49-54
[5.]
E. Sforza, J. Krieger, E. Weitzenblum, M. Apprill, E. Lampert, J. Ratamaharo.
Long-term effects of treatment with nasal continuous positive airway pressure on daytime lung function and pulmonary hemodynamics in patients with obstructive sleep apnea.
Am Rev Respir Dis, 141 (1990), pp. 866-870
[6.]
K.H. Rühle, P. Kempf, B. Mössinger.
Monitoring at home.
[7.]
T. Salmi, T. Telaviki, M. Partien.
Evaluation of automatic analysis of SCSB, airflow and oxygen saturation signals in patients with sleep-related apneas.
Chest, 96 (1989), pp. 255-261
[8.]
S. Gyulay, D. Gould, B. Sawyer, D. Pond, A. Mant, N.S. Saunders.
Evaluation of microprocessor-based portable home-monitoring System to mesure brething during sleep.
Sleep, 10 (1987), pp. 130-142
[9.]
S. Lord, B. Sawyer, D. Pond, D. O’Connell, A. Eyland, A. Mant, et al.
Interrater reliability of computer-Assisted scoring of breathing during sleep.
Sleep, 12 (1989), pp. 550-558
[10.]
E. Svanborg, H. Larson, B. Carlsson-Nordlander, R. Pirskanen.
A limited diagnostic investigation for obstructive sleep apnea syndrome. Oximetry and static charge sensitive bed.
Chest, 98 (1990), pp. 1.341-1.345
[11.]
C. Guilleminault, R. Connoly, R. Winkle, R. Melvin.
Cyclical variation of the hear rate in sleep apnea syndrome: Mechanisms and usefulness of 24 h electrocardiography as a screening technique.
Lancet, 1 (1984), pp. 126-131
[12.]
C. Zwillich, T. Devlin, D. White, et al.
Bradycardia during sleep apnea.
J Clin Invest, 69 (1982), pp. 1.286-1.292
[13.]
P.J. Hanly, C.H.F. George, T. Millar, M.H. Kriger.
Heart rate response to breath-hold, valsalva and mueller maneuvers in obstructive sleep apnea.
Chest, 95 (1989), pp. 735-739
[14.]
S. Masuyama, T. Shinozaki, S. Kohchiyama, S. Okita, H. Kimura, Y. Honda, et al.
Heart rate depression during sleep apnea depends on hypoxic chemosensitivity. A study at high altitude.
Am Rev Respir Dis, 141 (1990), pp. 39-42
[15.]
M.J. Decker, P.L. Hoekje, K.P. Strhol.
Ambulatory monitoring of arterial oxygen saturation.
Chest, 95 (1989), pp. 717-722
[16.]
E.C. Fletcher, C. Costarango, T. Miller.
The Rate of fall of arterial oxyhemoglobin saturation in obstructive sleep apnea.
Chest, 96 (1898), pp. 717-722
[17.]
A. Wiliams, G. Yu, S. Santiago, M. Stein.
Screening for sleep apnea using pulse oximetry and a clinical score.
Chest, 100 (1991), pp. 631-635
[18.]
P. Aubry, V. Jounieaux, D. Rose, A. Duran, P. Levi-Valenssi.
The SaO2/t diagram as a useful means to express nocturnal hipoxemia.
Chest, 96 (1989), pp. 1.341-1.345
[19.]
R.J. Farney, L.E. Walker, R.L. Jensen, J.M. Walker.
Ear oximetry to detect apnea and differentiate rapid eye movement (REM) and non-REM (NREM) sleep. Screening for the sleep apnea syndrome.
Chest, 89 (1986), pp. 533-539
[20.]
C.F. George, T.W. Millar, M.H. Kriger.
Identification and quantification of apneas by computed-based analysis of oxigen saturation.
Am Rev Respir Dis, 137 (1988), pp. 1.238-1.240
[21.]
P.E. Krumpe, J.M. Cummiskey.
Use of laringeal sound recordings to monitor apnea.
Am Rev Respir Dis, 122 (1980), pp. 797-801
[22.]
J.M. Cummiskey, T.C. Wiliams, P.E. Krumpe, C. Guilleminault.
The detection and quantification of sleep apnea by tracheal sound recordings.
Am Rev Respir Dis, 126 (1982), pp. 221-224
[23.]
J. Peirick, J.W. Shepard Jr..
Automated apnea detection by Computer: analysis of tracheal breath sounds.
Med Biol Eng Comput, 21 (1983), pp. 632-635
[24.]
T. Penzel, G. Amend, K. Meinzer, J.H. Peter, P. Wichert.
MESAM: A heart rate and snoring recorder for detection of obstructive sleep apnea.
Sleep, 13 (1990), pp. 172-182
[25.]
R. Stoohs, C. Guilleminault.
Investigation of automatic screening device (MESAM) for obstructive sleep apnea.
Eur Respir J, 3 (1990), pp. 823-829
[26.]
T. Penzel, W. Althaus, K. Meinzer, J.H. Peter, P. Wichert.
A Device for ambulatory heart rate, oxygen saturation and snoring recording.
13Th Annual International Conference IEEE EMBS. New Frontiers of Biomediacal Engineering, 13 (1991), pp. 1.616-1.617
[27.]
R. Stoohs, C. Guilleminault, MESAM 4.
An ambulatory device for the detection of patients at risk for obstructive sleep apnea syndrome (OSAS).
Chest, 101 (1992), pp. 1.221-1.227
[28.]
R. Martin, A. Block, M. Cohn, W. Conway, C. Hudgel, A. Powles, et al.
Indications and standards for cardiopulmonary sleep studies. American College of Chest Physicians and Association of Sleep Disorders Centers.
Sleep, 8 (1985), pp. 371-379
[29.]
American Thoracic Society.
Medican Section of the American Lung Association. Indications and standards for cardiopulmonary sleep studies.
Am Rev Respir Dis, 139 (1989), pp. 559-568
[30.]
J.M. Bland, D.G. Altman.
Statistical methods for assessing agreement between two methods of clinical measurement.
Lancet, 1 (1986), pp. 307-310
[31.]
G.W. Snedecor, W.G. Cochran.
Statistical Methods.
Seventh edition, The lowa State University Press, (1980), pp. 243-244
[32.]
D.L. Sackett, R.B. Haynes, P. Tugwell.
Clinical epidemiology. A basic science for clinical medicine.
Little, Brown and Company, (1985), pp. 59-138
[33.]
D.L. Simel, G.P. Samsa, D.B. Matchar.
Likelihood ratios with confidence: sample size estimation for diagnostic test studies.
J Clin Epidemiol, 44 (1991), pp. 763-770
[34.]
Normativa sobre la espirometría forzada.
Recomendaciones SEPAR. N.° 1. Sociedad Española de Patología Respiratoria.
Ediciones Doyma SA, (1987),
[35.]
C.J. Roberts, R.G. Hooper.
Prediction of polysomnography results by abbreviated testing [resumen].
Chest, 88 (1985), pp. 4.435
[36.]
B.D. Crocker, L.G. Olson, N.A. Saunders, M.J. Hensley, J.L. Mickeon, K.M. Alien, et al.
Estimation of the probability of disturbed breathing during sleep before a sleep study.
Am Rev Respir Dis, 142 (1990), pp. 14-18
[37.]
D.L. Bliwise, J.C. Nekich, W.C. Dement.
Relative validity of selfreported snoring as symptom of sleep apnea in a sleep clinic population.
Chest, 99 (1991), pp. 600-608
[38.]
S.M. Scharf, E. Garshick, R. Brown, P.V. Tishler, T. Tosteson, R. McCarley.
Screening for subclinical sleep-disorder breathing.
Sleep, 13 (1990), pp. 344-353
[39.]
S. Gylay, L.G. Olson, M.J. Hensley, M.T. King, K.K. Alien, N.A. Saunders.
A comparison of clinical assessment and home oximetry in the diagnosis of obstructive sleep apnea.
Am Rev Respir Dis, 147 (1993), pp. 50-53
Copyright © 1994. Sociedad Española de Neumología y Cirugía Torácica
Archivos de Bronconeumología
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?