Journal Information
Vol. 46. Issue 5.
Pages 230-237 (May 2010)
Share
Share
Download PDF
More article options
Vol. 46. Issue 5.
Pages 230-237 (May 2010)
Original Article
Full text access
Increased Inspiratory Oxygen Fractions (FIO2) Using a Conventional Drug Delivery Nebuliser
Fracciones inspiratorias elevadas de O2 con el uso del dispositivo convencional de nebulización de fármacos
Visits
7485
Joaquim Geaa,b,
Corresponding author
jgea@imim.es

Corresponding author.
, Mauricio Orozco-Levia,b, Lluís Gallartc
a Servicio de Neumología, Hospital del Mar, Instituto Municipal de Investigación Médica (IMIM), Universitat Pompeu Fabra, Barcelona, Spain
b Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Bunyola, Baleares, Spain
c Servicio de Anestesia, Hospital del Mar–IMIM, Universidad Autónoma de Barcelona, Barcelona, Spain
This item has received
Article information
Abstract
Bibliography
Download PDF
Statistics
Abstract

Nebulised drugs are very useful in COPD exacerbations. The most frequently used propellant is compressed air, which is commonly administered together with nasal oxygen in those patients with respiratory failure. The purpose of this approach is to avoid the risks inherent in breathing high inspiratory oxygen fractions (FIO2).

Aim

To analyze the actual FIO2 obtained with such a common method under experimental conditions.

Methods

Volunteers breathed using different patterns (quiet breathing, panting and deep breathing), through either the nose or the mouth, with oxygen flows of 0 vs. 4l/min. Then, they repeated quiet breathing and panting patterns, with nebulisation of saline propelled by compressed air (8l/min) and oxygen flows of 0, 2, 4, 6 and 8l/min. The FIO2 was simultaneously determined both in retronasal (RN) and retropharyngeal (RF) areas.

Results

During breathing without simultaneous nebulisation and oxygen flow of 4l/min, FIO2 reached mean values of 0.42–.71 (RN) and 0.29–.38 (RF) for the three ventilatory patterns analyzed. With nebulisations during quiet breathing, mean FIO2 values were 0.39 (RN) and 0.27 (RF) for 2l/min O2 flow, 0.47 (RN), 0.34 (RF) for 4l/min, 0.58 (RN), 0.38 (RF) for 6l/min, and 0.68 (RN) and 0.50 (RF) for 8l/min. Similar results were obtained with the panting pattern.

Conclusion

The FIO2 obtained using the conventional nebulisation system (propulsion with compressed air and simultaneous nasal oxygen therapy) are relatively high, and therefore, might involve risks for COPD patients during exacerbations.

Keywords:
Nebulisations
Hypoventilation
Oxygen therapy
Resumen

Los fármacos nebulizados son de gran utilidad en el tratamiento de las agudizaciones de la EPOC. El gas propulsor más utilizado es aire comprimido, que suele combinarse con oxigenoterapia por vía nasal en pacientes con insuficiencia respiratoria. Este método pretende evitar los riesgos inherentes a la inhalación de fracciones inspiratorias de oxígeno (FIO2) elevadas.

Objetivo

Analizar experimentalmente las FIO2 reales obtenidas mediante el dispositivo mencionado.

Método

Los voluntarios respiraron con diversos patrones (basal, jadeo y respiración profunda) por vías nasal u oral y a flujos de oxígeno de 0–4 l/min. Seguidamente, repitieron los patrones basal y de jadeo con nebulización de suero salino impulsada por aire comprimido (8 l/min) y flujos de oxígeno nasales de 0, 2, 4, 6 y 8 l/min. La FIO2 se determinó en regiones retronasal (RN) y retrofaríngea (RF).

Resultados

Durante la respiración sin nebulización simultánea y O2 a 4 l/min, la FIO2 alcanzó valores medios de 0,42–,71 (RN) y 0,29–0,38 (RF) para los 3 patrones analizados. Durante la nebulización con salino y en respiración tranquila, los valores medios de FIO2 fueron de 0,39 (RN) y 0,27 (RF) para O2 a 2 l/min, 0,47 (RN) y 0,34 (RF) para 4 l/min, 0,58 (RN) y 0,38 (RF) para 6 l/min y 0,68 (RN) y 0,50 (RF) para 8 l/min. Cifras similares se alcanzaron con patrón de jadeo.

Conclusión

Las FIO2 obtenidas mediante el sistema estándar de nebulización con aire comprimido y oxigenoterapia simultánea son relativamente elevadas y pudieran suponer un riesgo para los pacientes con EPOC exacerbada.

Palabras clave:
Nebulizaciones
Hipoventilación
Oxigenoterapia
Full text is only aviable in PDF
References
[1.]
Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for the Diagnosis, Management and Prevention of Chronic Obstructive Pulmonary Disease. NHLBI/WHO workshop report. National Heart, Lung and Blood Institute. Update of the Management Sections. GOLD website (www.goldcopd.com).
[2.]
Global Initiative for Asthma (GINA). Global Strategy for Asthma Management and Prevention. Evidence-based guidelines for asthma management and prevention. GINA website (www.ginasthma.com).
[3.]
M. Friedman.
A multicenter study of nebulized bronchodilator solutions in chronic obstructive pulmonary disease.
Am J Med, 100 (1996), pp. 30S-39S
[4.]
D.P. Tashkin, E. Bleecker, S. Braun, S. Campbell, A.C. DeGraff, D.W. Hudgel, et al.
Results of a multicenter study of nebulized inhalant bronchodilator solutions.
Am J Med, 100 (1996), pp. 62S-69S
[5.]
D. Datta, A. Vitale, B. Lahiri, R. Zu Wallack.
An ebaluation of nebulized levalbuterol in stable COPD.
Chest, 124 (2003), pp. 844-849
[6.]
British Thoracic Society.
Management of exacerbation of COPD.
Thorax, 59 (2004), pp. 131-156
[7.]
J.A. Barberá, G. Peces-Barba, A.GN. Agustí, J.L. Izquierdo, E. Monsó, T. Montemayor, et al.
Guía clínica para el diagnóstico y el tratamiento de la enfermedad pulmonar obstructiva crónica.
Arch Bronconeumol, 37 (2001), pp. 297-316
[8.]
B.R. Celli.
Update on the management of COPD.
Chest, 133 (2008), pp. 1451-1462
[9.]
L. Jiménez-Murillo, F.J. Montero.
Manejo urgente del paciente con EPOC descompensada. Medicina de Urgencias: Guía diagnóstica y protocolos de actuación.
2th ed., Ed. Harcourt, (1999),
[10.]
T.D. Robinson, D.B. Freiberg, J.A. Regnis, I.H. Young.
The role of hypoventilation and ventilation-perfusion redistribution in oxygen-induced hypercapnia during acute exacerbations of Chronic Obstructive Pulmonary Disease.
Am J Respir Crit Care Med, 161 (2000), pp. 1524-1529
[11.]
M. Núñez-Fernández, M.J. Muñoz-Martínez, A. Fernández-Villar, M.I. Botana, M.I. Botana, V. Leiro, et al.
¿Es segura la nebulización de broncodilatadores con alto flujo de oxígeno en pacientes hipercápnicos?.
Pneuma, 5 (2006), pp. 85-88
[12.]
C. O’Callaghan, P.W. Barry.
The science of nebulised drug delivery.
Thorax, 52 (1997), pp. S31-S44
[13.]
P. Cameron, J. Coleridge, J. Epstein, H. Teichtahl.
The safety of oxygen-driven nebulisers in patients with chronic hypoxaemia and hypercapnia.
Emerg Med, 4 (1992), pp. 159-162
[14.]
T.K. Lim, W.C. Tan.
Acute carbon dioxide narcosis during inhalationals therap‘y with oxygen powered nebulisers in patients with cvhronci airflow limiotation.
Ann Acad Med Singapore, 14 (1985), pp. 439-441
[15.]
S. Charoenratanakul, K. Borrirukwanit, S. Lekuthai, W. Satayawiwat, W. Dejsomritrutai.
Is driving oxygen flow rate clinically important for nebulizer therapy in patients with COPD?.
J Med Assoc Thai, 78 (1995), pp. 670-676
[16.]
J. Giner, L.V. Basualdo, P. Casan, C. Hernández, V. Macián, I. Martínez, et al.
Normativa sobre la utilización de fármacos inhalados. Normativas SEPAR.
Arch Bronconeumol, 36 (2000), pp. 34-43
[17.]
Higgins S. Oxygen versus medical air for nebulisers in patients with COPD. Evidence Centre Critical Appraisal. Series 2003: Therapy. Clayton (Australia): Monash University; p. 1-8.
[18.]
A.C. Guyton.
Regulación de la Respiración.
Tratado de Fisiología Médica, 9th ed., pp. 567-578
[19.]
N.R. Anthonisen, R.M. Cherniack.
Ventilatory control in lung disease.
Regulation of breathing. Part II. Chap 15, pp. 965-987
[20.]
R.B. Berry, C.K. Mahutte, J.L. Kirsch, D.W. Stansbury, R.W. Light.
Does the hypoxic ventilatory response predict the oxygen-induced falls in ventilation in COPD?.
Chest, 103 (1993), pp. 820-824
[21.]
C.R. Dick, C.S.H. Sassoon, R.B. Berry, C.K. Mahutte.
O2-induced change in ventilation and ventilatory drive in COPD.
Am J Respir Crit Care Med, 155 (1997), pp. 609-614
[22.]
C.A. Bradley, J.A. Fleetham, N.R. Anthionisen.
Ventilatory control in patients with hypoxemia due to obstructive lung disease.
Am Rev Respir Dis, 120 (1979), pp. 21-30
[23.]
J.A. Fleetham, C.A. Bradley, M.H. Kryger, N.R. Anthionisen.
The effect of low flow oxygen therapy on the chemical control of ventilation in patients with hypoxemic COPD.
Am Rev Respir Dis, 122 (1980), pp. 833-840
[24.]
W.F. Dunn, S.B. Nelson, R.D. Hubmayr.
Oxygen-induced hypercarbia in obstructive pulmonary disease.
Am Rev Respir Dis, 144 (1991), pp. 526-530
[25.]
C. Tardif, G. Bonmarchand, J.F. Gibon, M.F. Hellot, J. Leroy, P. Pasquis, et al.
Respiratory response to CO2 in patients with chronic obstructive pulmonary disease in acute respiratory failure.
Eur Respir J, 6 (1993), pp. 619-624
[26.]
C.SH. Sassoon, K.T. Hassell, C.K. Mahutte.
Hyperoxic-induced hypercapnia in stable chronic obstructive pulmonary disease.
Am Rev Respir Dis, 135 (1987), pp. 907-911
[27.]
M. Montes de Oca, B.R. Cell.
Mouth occlusion pressure, CO2 response and hypercapnia in severe chronic obstructive pulmonary disease.
Eur Respir J, 12 (1998), pp. 666-671
[28.]
G. Gundmunsson, T.H. Gislason, E. Lindberg, R. Hallin, C.S. Ulrik, E. Brondum, et al.
Mortality in COPD patients discharged from hospital: the role of treatment and co-morbidity.
Respir Res, 7 (2006), pp. 109-116
[29.]
A.K. Denniston, C. O’Brien, D. Stableforth.
The use of oxygen in acute exacerbations of chronic obstructive pulmonary disease: a prospective audit of pre-hospital and hospital emergency management.
Clin Med, 2 (2002), pp. 449-451
[30.]
P.K. Plant, J.L. Owen, M.W. Elliott.
One year period prevalence study of respiratory acidosis in acute exacerbations of COPD: implications for the provision of non-invasive ventilation and oxygen administration.
Thorax, 55 (2000), pp. 550-554
[31.]
M. Aubier, D. Murciano, J. Milic-Emili, E. Touaty, J. Daghfous, R. Pariente, et al.
Effects of the administration of O2 on ventilation and blood gases in patients with chronic obstructive pulmonary disease during acute respiratory failure.
Am Rev Respir Dis, 122 (1980), pp. 747-754
[32.]
J.F. Muir, T. Similowski, J.P. Derenne.
Oxygen therapy during acute respiratory failure of chronic obstructive pulmonary disease.
Acute Respiratory Failure in Chronic Obstructive Pulmonary Diseases, pp. 579-590
[33.]
K. Sandek, T. Bratel, G. Hellstrom, L. Lagerstrand.
Ventilation-perfusion inequality and carbon dioxide sensitivity in hypoxaemic chronic obstructive pulmonary disease (COPD) and effects of 6 months of long-term oxygen treatment (LTOT).
Clin Phsyiol, 21 (2001), pp. 584-593
[34.]
A. Jubran, M.J. Tobin.
Reliability of pulse oximetry in titrating supplemental oxygen therapy in ventilator dependent patients.
Chest, 97 (1990), pp. 1420-1425
[35.]
H.J. Durrington, M. Flubacher, C.F. Ramsay, L.S.G.E. Howard, B.D.W. Harrison.
Initial oxygen management in patients with an acute exacerbation of chronic obstructive pulmonary disease.
Q J Med, 98 (2005), pp. 499-504
[36.]
R. Murphy, P. Driscoll, R. O’Driscoll.
Emergency oxygen therapy for COPD patients.
Emerg Med, 18 (2001), pp. 333-339
[37.]
E. Ballester, A. Reyes, J. Roca, R. Guitart, P.D. Wagner, R. Rodriguez-Roisin.
Ventilationperfusion mismatching in acute severe asthma: effects of salbutamol and 100% oxygen.
Thorax, 44 (1989), pp. 258-267
[38.]
E. Polverino, F.P. Gómez, H. Manrique, N. Soler, J. Roca, J.A. Barberà, et al.
Gas exchange response to short-acting beta2-agonists in chronic obstructive pulmonary disease severe exacerbations.
Am J Respir Crit Care Med, 176 (2007), pp. 350-355
Copyright © 2010. Sociedad Española de Neumología y Cirugía Torácica
Archivos de Bronconeumología
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?