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a b  s t  r a  c t

Introduction:  Understanding the  diverse pathogenetic  pathways in obstructive sleep apnea (OSA) is cru-
cial for  improving  outcomes.  microRNA  (miRNA)  profiling  is a promising strategy  for  elucidating these
mechanisms.
Objective:  To  characterize  the  pathogenetic pathways linked  to OSA  through  the  integration  of miRNA
profiles,  machine  learning (ML) and bioinformatics.
Methods:  This  multicenter  study  involved  525 patients  with  suspected  OSA  who  underwent polysomnog-
raphy.  Plasma miRNAs  were  quantified  via  RNA  sequencing in the discovery  phase, with  validation  in
two  subsequent phases  using  RT-qPCR.  Supervised ML  feature  selection methods  and  comprehensive
bioinformatic  analyses  were  employed.  The associations  among  miRNA targets, OSA and OSA treatment
were further  explored  using publicly  available external datasets.
Results: Following  the  discovery  and  technical  validation  phases in a subset  of patients with  and  without
confirmed  OSA  (n  = 53),  eleven  miRNAs  were  identified as  candidates  for  the  subsequent  feature  selection
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process. These miRNAs  were  then  quantified  in the  remaining  population  (n =  472).  Feature  selection
methods revealed that  the miRNAs  let-7d-5p,  miR-15a-5p  and miR-107 were  the  most  informative  of
OSA.  The predominant  mechanisms  linked  to these  miRNAs  were  closely  related to  cellular  events such
as  cell death,  cell differentiation, extracellular remodeling,  autophagy and  metabolism.  One  target of let-
7d-5p  and  miR-15a-5p,  the  TFDP2  gene, exhibited  significant  differences in gene  expression  between
subjects  with  and without  OSA across three independent  databases.
Conclusion: Our  study  identified three  plasma miRNAs  that,  in conjunction with  their target  genes,  provide
new insights  into OSA  pathogenesis  and reveal  novel regulators  and  potential drug  targets.

©  2024  Published by  Elsevier  España, S.L.U. on behalf  of SEPAR.

Introduction

Obstructive sleep apnea (OSA) is a  prevalent sleep disorder
characterized by  the recurrent occurrence of obstructive apnea
and hypopnea, leading to repeated decreases in oxygen saturation
and disrupted sleep patterns. OSA is an important contributor to
poor health outcomes, including a  spectrum of morbidities and an
elevated risk of major causes of mortality.1,2 OSA is  a  complex con-
dition with a heterogeneous profile of clinical and physiological
phenotypes,3,4 presenting a  challenge in tailoring effective thera-
peutic strategies. The identification of the pathogenetic pathways
is a pivotal step in  improving outcomes in OSA patients. Contin-
uous positive airway pressure (CPAP) represents the cornerstone
therapeutic intervention. Despite its well-established efficacy in
reducing daytime somnolence and enhancing quality of life, a  pro-
portion of individuals treated with CPAP continues to experience
residual symptoms and associated comorbidities.5 This scenario
suggests the necessity for adjuvant therapies capable of comple-
menting CPAP therapy and addressing the multifactorial nature of
OSA.

microRNAs (miRNAs) are  small noncoding RNAs (ncRNAs)
composed of 19–25 nucleotides that play a  key role in  the post-
transcriptional regulation of gene expression. miRNAs typically
inhibit gene expression by  binding to target mRNAs, thereby
inducing their degradation or translational repression. However,
in specific instances, miRNAs can also activate translation.6 It
has been predicted that a significant proportion of the human
transcriptome is regulated by miRNAs.7 As such, miRNAs are
mediators of numerous fundamental biological processes and
play significant roles in various diseases, including respiratory
conditions.8 Previous studies have shown that miRNAs play a role
in various pathobiological mechanisms associated with OSA. For
example, the SREBP2/miR-210 axis and its impact on mitochon-
drial dysfunction represent a mechanistic link between OSA and
endothelial cell dysfunction.9 The downregulation of miR-15b-5p
and miR-92b-3p in  OSA patients may  contribute to intermittent
hypoxia/reoxygenation-induced oxidative stress by influencing the
eicosanoid inflammatory pathway.10

Over the past decade, miRNAs have emerged as crucial tools
for developing next-generation therapeutics. Numerous well-
designed studies have demonstrated the efficacy and safety of
miRNA-based treatments.11,12 A  notable example is miravirsen,
a locked nucleic acid–modified DNA phosphorothioate antisense
oligonucleotide that sequesters mature miR-122, resulting in a
dose-dependent and sustained reduction in hepatitis C virus (HCV)
RNA levels in patients with chronic HCV genotype 1 infection.13 In
addition, second-line therapies using miRNA mimics, such as miR-
34a and let-7g, are being investigated to  reduce tumor burden and
promote tumor suppression.14,15 Beyond their intracellular loca-
tion, miRNAs serve as mediators of intercellular communication
through their secretion into the extracellular milieu and regulation
of gene expression in  recipient cells.16–18 Although the hormone-
like effect of miRNAs has been a  topic of debate,19 a  multitude of
studies have provided evidence supporting their role as endocrine

genetic signals.20–22 Overall, the circulating miRNome has emerged
as a promising tool for improving the mechanistic understanding
of disease and identifying novel therapeutic treatments.

The analysis of ncRNAs, including miRNAs, constitutes a valu-
able strategy in the field of network medicine, as it facilitates
the discovery of novel mechanistic insights that were previously
elusive.23,24 Investigating these transcripts enhances the ability
to identify molecular mechanisms associated with a  given dis-
ease. Notably, the integration of extracellular ncRNA profiling with
machine learning (ML) methods has been previously employed to
identify molecular drivers of disease.25 The distinct advantage of
ML is its ability to decipher previously unknown multidimensional
interactions between predictors and outcomes and therefore to
identify novel biological features. This is particularly relevant for
miRNAs, given their involvement in  regulating gene expression
through dynamic, complex and coordinated networks.26

In the current investigation, we  synergistically employed cir-
culating cell-free miRNome profiling with ML  feature selection
techniques and bioinformatic analyses. This integrative approach
aimed to  characterize the mechanistic pathways associated with
OSA and to propose innovative disease-modifying agents.

Methods

Methods for blood collection, miRNA sequencing and external
dataset are provided in  Supplemental Material.

Study Population

The study included 525 subjects referred to the sleep unit
due to suspected OSA (ClinicalTrials.gov identifier: NCT03513926).
The recruitment was conducted at University Hospital Arnau de
Vilanova-Santa María of Lleida and Hospital San Pedro Alcántara of
Cáceres in Spain. Patients aged older than 18 years were recruited
for the present study. The exclusion criteria were the presence of  a
previously diagnosed sleep disorder, a  history of CPAP treatment,
inability to  complete the questionnaires and any medical, social
or geographic factors that could compromise the eligibility of the
subject, i.e., pregnancy, substance abuse, cancer, renal insufficiency,
severe chronic obstructive pulmonary disease, chronic depression
and other very limiting chronic diseases or life expectancy less than
1 year. General physical and anthropometric parameters were doc-
umented, and information on sociodemographic characteristics,
medical history, medication use and lifestyle habits was  collected
by trained clinicians.

Sleep Evaluation

All eligible participants underwent a  comprehensive
polysomnographic (PSG) sleep study (Sleepware G3, Philips,
Amsterdam, Netherlands). All  procedures were conducted accord-
ing to national guidelines and regulations governing clinical
practice.27 Trained personnel who  adhered to  standard criteria28

analyzed the results of the sleep studies. Apnea was  characterized
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as an interruption or reduction in oronasal airflow by ≥90% for at
least 10 s, while hypopnea was defined as a 30–90% reduction in
oronasal airflow for at least 10 s,  associated with either oxygen
desaturation by at least 3% or an arousal on the electroencephalo-
gram. The apnea–hypopnea index (AHI), which is indicative of
OSA severity, was calculated based on the average number of
apnea and hypopnea events per hour of sleep. Following the PSG
study, subjects were categorized according to the International
Consensus Document on Obstructive Sleep Apnea29 into non-OSA
(AHI < 15 events/h) and OSA (AHI ≥ 15 events/h) groups.

Ethics

All subjects provided written informed consent for study par-
ticipation prior to  the collection of blood samples. This study was
revised and approved by the Clinical Research Ethics Committee
of the University Hospital Arnau de Vilanova-Santa María of Lleida
(no. 1153/1411). The study was performed according to the Decla-
ration of Helsinki.

Study Design

The study design is presented in  Fig. 1. The experimental
approach was composed of three clearly defined phases: (i) Dis-
covery phase: from the initial population of 525 participants with
suspected OSA, 27 subjects with confirmed OSA were randomly
selected. Subsequently, 26 controls without OSA from the same
study population were selected using nearest neighbor propen-
sity score matching by  age, sex and body mass index (BMI). miRNA
sequencing was conducted on these 53 subjects. The number of
samples aligns with the recommendations for transcriptomic pro-
filing studies.30 (ii) Technical validation phase: to  confirm the
reliability of the miRNA sequencing findings, a  rigorous assess-
ment of miRNA candidates was conducted using RT-qPCR, which
is acknowledged as the gold standard for circulating miRNA quan-
tification. This technical validation was performed on the same set
of samples employed in the discovery phase (n =  53). (iii) Com-
prehensive evaluation: miRNA candidates that successfully passed
the technical validation phase were further evaluated in  the entire
study population, excluding samples utilized in the previous steps
(n = 472).

Plasma microRNA Profiling

Total RNA was extracted from 200 �L of frozen plasma
utilizing the miRNeasy Serum/Plasma Advanced Kit (Qiagen,
Hilden, Germany). To establish a normalization strategy, synthetic
Caenorhabditis elegans miR-39-3p (cel-miR-39-3p) (Qiagen) was
introduced as an external reference miRNA at a concentration of
1.6 × 108 copies/�L. Additionally, 1 �g of MS2 carrier RNA (Roche
Diagnostics, Mannheim, Germany) was added to the mixture to
increase the yield of extracellular miRNAs. Quality control for RNA
isolation was assured by  the inclusion of the RNA Spike-In Kit (syn-
thetic UniSp2, UniSp4, and UniSp5) (Qiagen). All reagents were
spiked into samples during RNA isolation after incubation with the
denaturing solution. The isolated RNA was then eluted in 20 �L  of
RNAse-free water and stored at −80 ◦C.

For miRNA quantification, the miRCURY LNA Universal RT
microRNA PCR System (Qiagen) protocol was followed. Reverse
transcription (RT) to  synthesize complementary DNA (cDNA) was
performed using a  miRCURY LNA RT Kit (Qiagen) in a total reac-
tion volume of 10 �L. The spike-in UniSp6 (Qiagen) was added to
monitor the RT reaction. The RT conditions included incubation at
42 ◦C for 60 min, inactivation at 95 ◦C for 5 min  and immediate cool-
ing at 4 ◦C. Subsequently, the cDNA was stored at −20 ◦C. We used
the miRCURY LNA miRNA Custom Panels (384-well plates) (Qia-

gen), which contained the selected miRNAs and spike-in primers
(Qiagen). A  QuantStudioTM 7 Flex Real-Time PCR System (Applied
Biosystems, Waltham, MA,  USA) was used for qPCR in a 10 �L
reaction volume. The RT-qPCR conditions included an initial incu-
bation at 95 ◦C  for 2 min, followed by 40 cycles of 95 ◦C for 10 s and
56 ◦C for 1 min  and a  final melting curve analysis. Synthetic UniSp3
served as an interplate calibrator and qPCR control. Amplification
curves were assessed by melting curve analysis using QuantStudio
Software v1.3 (Thermo Fisher Scientific, MA,  USA), ensuring the
presence of single products and the absence of primer dimers.

The quantification cycle (Cq) was  determined as the fractional
cycle number at which the fluorescence surpassed a  defined thresh-
old. Cq values of spike-in RNA templates were initially scrutinized
to monitor the homogenous efficiencies of RNA extraction pro-
cedures, the robustness of RT and the absence of PCR inhibitors.
The �Cq ratio (miR-23a-3p–miR-451a), as proposed by  Blondal
et al.,31 was  used to exclude hemolyzed samples. Cq values exceed-
ing 35 cycles were considered undetectable and censored at the
minimum level observed for each miRNA. miRNAs detected below
the limit of detection in more than 80% of the samples were cat-
egorized as nonexpressed. Samples that  did not pass the quality
control test were excluded from subsequent statistical analysis.
Relative quantification was  accomplished using the 2−Cq method
(�Cq = CqmiRNA − Cqcel-miR-39-3p). The expression levels were log-
transformed for subsequent statistical analysis.

Functional Assessment

We  retained the predicted miRNA–target interac-
tions utilizing the web-based TargetScan (Release 8.0,
https://www.targetscan.org/vert 80/).32 The search settings
were set to all predicted targets, regardless of conservation. To elu-
cidate the biological relevance and pathways associated with the
identified miRNA targets, we conducted a  functional enrichment
analysis using the R package ClusterProfiler 4.6.2.33 ClusterPro-

filer is released through the Bioconductor project and can be
accessed via https://bioconductor.org/packages/clusterProfiler/.
The Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene
Ontology (GO) and Reactome were used as reference databases.
To further explore the expression patterns of selected miRNA
targets, tissue patterns from the Genotype-Tissue Expression
(GTEx) Portal (https://www.gtexportal.org/home/)  project v.8
were used. To explore potential therapeutic interventions, we
investigated the repositioning potential of upregulated miRNA
targets using the Drug–Gene Interaction database (DGIdb v.5.0.5)
(https://dgidb.org).34

Statistical Analysis

All the statistical analyses were performed using R  version
4.2.2 (R Foundation for Statistical Computing). Descriptive statis-
tics were employed to explore the characteristics of the study
population. Continuous variables were compared between groups
using the Mann–Whitney U test, whereas categorical variables
were compared using Fisher’s exact test. The data are presented
as frequencies (percentages) for categorical variables and as medi-
ans (25th and 75th percentiles) for continuous variables. Spearman
correlation was  utilized to estimate the correlation between con-
tinuous variables. A  correlation coefficient (rho) greater than 0.3
was  considered as biologically relevant.35 The p-value threshold
defining statistical significance was  set at <0.05.

Three distinct ML-based feature selection methods were imple-
mented simultaneously: Random forest with Boruta,36 variable
selection using random forests (VSURF)37 and sparse partial least
squares (sPLS).38 To ensure the robustness and consistency of our
selection process, we  repeated each method 50 times. In each itera-
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Fig. 1. Study workflow. Figure created with BioRender.com (https://app.biorender.com/),  license number: TH26UP0M73. Abbreviations:  CPAP: continuous positive airway
pressure; OSA: obstructive sleep apnea.

tion, miRNAs selected in at least one run were considered important
variables. Finally, miRNAs consistently identified across all three
methods were designated as candidates for further investigation
through bioinformatics analysis, as previously described.39

For the external datasets, we obtained the preprocessed gene
expression data and normalized them using quantile normaliza-
tion. The raw data were processed and normalized using methods
implemented in the Limma  R  package40 for the Illumina and Agilent
microarrays and the oligo R package41 for the Affymetrix chips. Sub-
sequently, we applied a base 2 logarithmic scale transformation.
Following data normalization, we averaged the expression data
from multiple probes associated with the same gene. An extensive
outlier analysis was performed to assess the plausibility of extreme
values. After thorough evaluation, outliers were excluded from fur-
ther analysis. Differential expression analysis was performed with
processed data between groups of each microarray dataset using
the Limma R package. For the longitudinal analysis, we used a
paired-samples design to account for interindividual differences
with respect to the pretreatment state. For each comparison, we

utilized the Limma moderated t-test (implemented with the “lmFit”
and “eBayes” functions) to  calculate differential expression for each
gene.

Results

Selection of microRNA Candidates

miRNA sequencing was conducted in specific matched sub-
groups of subjects with and without confirmed OSA  (n =  53). The
main characteristics of the study groups are detailed in Table 1.
miRNA candidates were chosen based on the following criteria:
over the 90th decile of expression (to ensure their detection in
the following phases), ≥1.3-fold differential expression and p-
value ≤  0.2 (to identify a  broader range of potential biomarkers).
A total of 38 miRNAs fulfilled these criteria, as depicted in  Fig. 2A.

To validate the miRNA sequencing results, the selected can-
didates were further examined through RT-qPCR using the same
sample set (n =  53). Eight samples were excluded from further anal-
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Table  1

Clinical Characteristics of the Study Population at Baseline (Discovery and Technical Validation Phases).

All  Non-OSA OSA p-Value n

n  =  53  n = 26 n = 27

Clinical data

Demographic/anthropometric

Age, years 59.0 [52.0;65.0] 57.0 [52.5;60.0] 61.0 [53.0;67.0] 0.200 53
Sex,  female 22 (41.5%) 11 (42.3%) 11 (40.7%) 1.000 53
BMI,  kg/m2 24.0 [12.0;37.0] 20.0 [10.2;36.2] 27.0 [15.5;38.0] 0.262 53

Polysomnographic data

Respiratory disturbances

AHI, events/h 15.1 [10.1;39.9] 9.75 [3.01;12.6] 39.9 [33.1;56.3] <0.001 53

Data are presented as the median [25th;75th percentile] for continuous variables and as frequencies (percentage) for categorical variables. p-Values <  0.05 are presented in
bold. AHI = apnea–hypopnea index; BMI  =  body mass index; OSA  =  obstructive sleep apnea.

Fig. 2. Identification of microRNAs related to  obstructive sleep apnea. (A) Volcano plot showing the p-value versus the fold change for the microRNAs analyzed in the
discovery phase. microRNAs over the 90th decile of expression are depicted in dark gray. The green dots indicate microRNA candidates. (B) Violin plots including microRNAs
that  fulfilled the selection criteria in the technical validation phase. Plots depict log102−�Cq as the microRNA expression unit. The gray color indicates the nonobstructive sleep
apnea  group, and the red color indicates the obstructive sleep apnea group. The plot presents the median (25th and 75th percentiles) estimator of the density (as density
curves) and individual values (black dots). Fold changes and p-values are displayed. (C) Correlogram showing spearman correlation coefficients between polysomnographic
parameters and the microRNAs that fulfilled the selection criteria in the technical validation phase. The  color scale illustrates the degree of correlation and ranges, indicating
the  negative to positive correlations. Abbreviations: AHI: apnea–hypopnea index; OSA: obstructive sleep apnea; SaO2: oxygen saturation; TSat90: time during the  night with
SaO2 below 90%.

ysis due to failing the quality control test, which was  attributed
to the presence of hemolysis and/or low quality of the spike-
ins. miR-6877-5p was expressed at low levels (Cq ≥  35 in  more
than 80% of the samples) and was therefore excluded from fur-
ther analysis. Among the remaining 37 miRNA candidates, those
with a ≥1.3-fold difference between study groups, with a p-
value ≤ 0.01 and that correlated with the AHI (rho > 0.3) were
retained (Fig. 2B,  C and Supplemental table* S1). Ultimately,
11 miRNAs—let-7d-5p, miR-15a-5p, miR-15b-5p, miR-18a-5p,
miR-20b-5p, miR-30e-5p, miR-107, miR-199a-5p, miR-425-5p,
miR-484 and miR-625-5p—were identified as candidates for the
subsequent feature selection process. With the exception of the AHI

and the apnea index, weak correlations were observed between the
miRNA panel and the parameters obtained from PSG (Fig. 2C).

Feature Selection Procedure and Bioinformatics

Following the identification of miRNA candidates associated
with OSA, quantification was performed using RT-qPCR in  the entire
study population. A total of 9.5% of the samples did not pass qual-
ity control due to hemolysis or  variability in  spike-ins and were
discarded from further analysis. The detailed characteristics of  the
study population are presented in  Table 2.  As  anticipated, patients
with OSA were older, predominantly men, had a  higher BMI  and
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Table  2

Characteristics of the Study Population (Comprehensive Evaluation).

All  Non-OSA OSA p-Value n

n  = 427 n = 108 n =  319

Clinical data

Demographic/anthropometric

Age, years 51.0 [45.0;57.0] 45.5 [39.0;53.2] 53.0 [47.0;58.5] <0.001 427
Female 129 (30.2%) 51 (47.2%) 78  (24.5%) <0.001 427
BMI, kg/m2 30.9 [27.2;35.2] 27.8 [25.1;32.0] 32.0 [28.4;35.8] <0.001 427

Smoking status 0.863 423
Never smoker 164 (38.8%) 44 (40.7%) 120 (38.1%)
Current  smoker 114 (27.0%) 29 (26.9%) 85 (27.0%)
Former  smoker 145 (34.3%) 35 (32.4%) 110 (34.9%)

Comorbidities

Hypertension 178 (41.7%) 26 (24.1%) 152 (47.6%) <0.001 427
Cardiovascular disease 83 (19.7%) 13 (12.1%) 70 (22.2%) 0.034 422
Diabetes 58 (13.6%) 6 (5.56%) 52  (16.3%) 0.008 427
Dyslipidemia 135 (32.1%) 20 (18.7%) 115 (36.6%) 0.001 421

Medications use

ACE inhibitors 92 (21.5%) 13 (12.0%) 79  (24.8%) 0.008 427
Beta-blockers 63 (14.8%) 7 (6.48%) 56 (17.6%) 0.008 427
Diuretic agents 65 (15.3%) 12 (11.2%) 53  (16.7%) 0.230 425
Calcium-channel blockers 35 (8.22%) 7 (6.48%) 28  (8.81%) 0.578 426
Angiotensin II receptor blockers 42 (9.86%) 9 (8.33%) 33  (10.4%) 0.668 426
Anticoagulants 14 (3.28%) 1 (0.93%) 13  (4.08%) 0.206 427
Insulin 22 (5.15%) 1 (0.93%) 21  (6.58%) 0.041 427
Lipid-lowering drugs 95 (22.3%) 15 (13.9%) 80 (25.2%) 0.022 426

Polysomnography data

Respiratory disturbances

AHI, events/h 31.6 [14.7;57.5] 8.34 [4.30;11.6] 43.5 [27.4;65.4] <0.001 427
Hypopneas, events/h 17.4 [9.66;28.9] 6.96 [3.61;10.2] 22.4 [15.3;33.2] <0.001 422

Nocturnal hypoxemia

Mean SaO2 ,  %  93.0 [91.0;94.0] 94.0 [93.0;95.0] 92.0 [91.0;94.0] <0.001 427
Minimum SaO2 ,  % 82.0 [73.0;87.0] 88.5 [85.0;91.0] 79.0 [71.0;84.0] <0.001 421
Percentage of time spent with O2 saturation below 90% (CT90), % 2.97 [0.30;14.1] 0.09 [0.00;0.66] 5.60 [1.60;21.1] <0.001 425

Sleep fragmentation

Arousal index, events/h 36.7 [24.6;58.8] 19.5 [13.9;26.4] 46.1 [32.6;65.5] <0.001 422
Movement arousal index, events/h 2.80 [0.84;6.35] 4.18 [2.00;7.18] 2.30 [0.55;5.94] 0.001 420
Respiratory arousal index, events/h 19.5 [7.27;39.1] 4.88 [1.96;7.93] 25.7 [15.7;48.4] <0.001 416

Sleep quality

ESS 10.0 [7.00;14.0] 11.0 [7.00;14.0] 10.0 [6.00;14.2] 0.618 413

Data are presented as the median [25th;75th percentile] for quantitative variables and as frequencies (percentage) for qualitative variables. p-Values <  0.05 are pre-
sented in bold. Definitions of abbreviations: ACE =  angiotensin-converting enzyme; AHI = apnea–hypopnea index; BMI  = body mass index; ESS = Epworth sleepiness scale;
OSA  = obstructive sleep apnea; SaO2 =  oxygen saturation.

had a more unfavorable profile of comorbidities and disease-related
sleep parameters.

Due to the intricate dynamics of miRNA networks, the circu-
lating levels of miRNAs were entered into a  supervised feature
selection protocol that integrates three distinct ML-based methods
(Fig. 3A). The outcome of each method resulted in a unique feature
subset: (i) VSURF selected eight candidates: let-7d-5p, miR-15a-
5p, miR-18a-5p, miR-30e-5p, miR-107, miR-199a-5p, miR-425-5p
and miR-484; (ii) sPLS selected six candidates: let-7d-5p, miR-15a-
5p, miR-15b-5p, miR-20b-5p, miR-107 and miR-625-5p; and (iii)
Boruta selected all candidates. Notably, let-7d-5p, miR-15a-5p and
miR-107 demonstrated robust and consistent selection across the
three methods.

Target prediction for let-7d-5p, miR-15a-5p and miR-107 utiliz-
ing TargetScan v8.0 revealed a total of 3436 transcripts as potential
targets (1993 targets for let-7d-5p, 1605 targets for miR-15a-5p
and 101 targets for miR-107), with 257 targets shared by at least
two of the selected miRNAs. To elucidate the underlying molecular
pathways and biological processes associated with these iden-
tified target transcripts, an exhaustive enrichment analysis was
conducted employing the KEGG, GO  and Reactome databases. The
analyses identified 9 KEGG pathways, 220 GO processes and 15
Reactome pathways (Fig. 3B–D and Supplemental Tables S2–S4).
The predominant significant pathways and processes were closely
linked to cellular events such as cell death, cell differentiation,
extracellular remodeling, autophagy and metabolism.

External Datasets

To assess the robustness of our findings, we systematically
validated the results by analyzing the expression of the target tran-
scripts in external datasets obtained from GEO. This process was
divided into two  steps. Initially, we conducted a comparative exam-
ination of miRNA targets between individuals with and without
OSA. Subsequently, we analyzed the influence of CPAP therapy on
the identified miRNA targets.

First, three distinct external datasets, including OSA patients and
non-OSA subjects, were evaluated (GSE226379, GSE135917 and
GSE75097). Among the targetomes of let-7d-5p, miR-15a-5p and
miR-107, one gene, the transcription factor Dp-2 (TFDP2), which is
a target of let-7d-5p and miR-15a-5p, exhibited significant differ-
ential expression in the three comparisons (fold change ≥  1.5 and
p-value ≤ 0.05) (Fig.  4A–C). To further elucidate the expression pro-
file of the miRNA targets, we retrieved data from the GTEx project,
which revealed that TFDP2 is  expressed in most human tissues
(Fig. 4D).

To explore the impact of the current therapeutic strategy, the
gene expression levels of TFDP2 were evaluated in two inde-
pendent external datasets (GSE133601 and GSE49800), including
samples from patients with OSA collected before and after CPAP
therapy. No alterations in the transcript levels were observed
following therapy (fold change ≥ 1.5 and p-value ≤ 0.05) (Fig. 4E
and F). Next, we evaluated the repositioning potential of  the
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Fig. 3. Identification of microRNA-mediated molecular mechanisms associated with obstructive sleep apnea. (A) Identification of microRNAs associated with obstructive
sleep  apnea using a consensus of three supervised machine learning feature selection algorithms (Boruta, VSURF and sPLS) with the intersected microRNAs among the
methods selected as candidates. (B–D) Functional enrichment analysis of the predicted downstream target genes using KEGG (B), GO (C) and Reactome (D) in the R  package
ClusterProfileR 4.0. The plots present the rich factors of the pathways with the most significant differences, considering their p-values. The intensity of the colors of the bars
denotes the p-values. The rich factor consists of a  ratio of target genes annotated in the molecular processes to  all  genes annotated in  the processes.
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Fig. 4. External datasets. (A–C) Volcano plots showing the  p-value versus the  fold change for the predicted targetome in  three external RNA sequencing datasets obtained
from  the GEO database from patients with obstructive sleep apnea. Significantly differentially expressed genes are presented in green (fold change >  1.5 and p-value ≤ 0.05).
Intersected genes among the datasets are labeled. (A) Plasma, GSE226379; (B) subcutaneous fat, GSE135917; and (C) peripheral blood mononuclear cells (PBMCs), GSE75097.
(D)  Tissue enrichment analysis using GTEx (https://www.gtexportal.org/home/). Each column denotes a  tissue type, and the row represents the intersected genes among the
external datasets. The  size and color of the points reflect the expression level of the gene, represented as normalized transcripts per  million (nTPM) values. The GTEx Project
was  supported by the Common Fund of the Office of the Director of the National Institutes of Health and by the NCI, NHGRI, NHLBI, NIDA, NIMH, and NINDS. (E, F) Volcano
plots  showing the p-value versus the fold change for the predicted targetome in two external RNA sequencing datasets, including obstructive sleep apnea patients allocated
to  CPAP treatment, obtained from  the GEO database. Intersected genes among the A–C datasets are labeled. (E) PBMCs, GSE133601; and (F) peripheral blood leukocytes,
GSE49800.
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miRNA target using DGIdb. No FDA-approved drugs were identi-
fied.

Discussion

Recognizing and characterizing the diverse pathogenetic path-
ways of OSA are pivotal steps toward improving patient outcomes.
In this study, we implemented a complete approach that synergis-
tically integrates plasma miRNA profiling with ML feature selection
techniques and bioinformatic analyses to elucidate the mechanistic
pathways associated with OSA and to propose innovative disease-
modifying agents.

Through the combination of a  high-throughput technique, i.e.,
sequencing, and the gold-standard methodology, i.e., RT-qPCR, we
identified a set of 11 plasma miRNAs potentially linked to OSA.
miRNAs play a significant role in finely regulating gene expression
through their multifaceted interactions. A comprehensive under-
standing of the dynamics of miRNA-mediated regulation is crucial
for deciphering their impact on cellular function and molecu-
lar pathways. ML  methodologies capture complex and nonlinear
relationships that may  remain elusive using conventional univari-
able analyses.42 Consequently, the candidates quantified in the
whole population were subjected to  a ML  feature selection pro-
cess to define the most informative miRNAs. A  combination of
three distinct feature selection methods was employed to  limit
the number of  selected miRNAs, thereby enhancing confidence
and reproducibility. Our approach revealed three relevant miR-
NAs: let-7d-5p, miR-15a-5p and miR-107. The use of ML-based
feature selection algorithms represents an innovative approach
in OSA research, limiting direct comparisons with previous find-
ings obtained using classical statistical approaches.43 Nevertheless,
our candidates have been previously associated with OSA. Serum
levels of miR-107 have been shown to  be significantly altered in
OSA patients compared with non-OSA controls.44 More recently,
a study including individuals referred to the otorhinolaryngology
service due to snoring or apnea revealed that both let-7d-5p and
miR-107 were differentially expressed in nonhypertensive OSA and
hypertensive OSA patients compared with controls, respectively.45

Furthermore, Santamaria-Martos et al.46 demonstrated the asso-
ciation of miR-107 with OSA severity parameters such as the AHI
and arousal index. Consequently, earlier investigations provide evi-
dence that the miRNAs identified here may  be associated with OSA,
further validating our ML  approach.

In the next step, we used predicted miRNA interactions and
enrichment analyses to provide novel insights into OSA patho-
biology. Our analysis defined an array of specific mechanisms
associated with the disease. Using three independent public
datasets generated from different tissues, i.e., plasma, periph-
eral blood mononuclear cells (PBMCs) and subcutaneous fat,
our approach identified TFDP2 as a potential contributor to OSA
pathology. TFDP2,  a member of the DP transcription factor fam-
ily, forms heterodimers with E2F transcription factors, facilitating
the transcriptional activation of genes critical for cell prolifer-
ation, differentiation and programmed cell death. For example,
loss of TFDP2 disrupts the normal downregulation of E2F2 tar-
get genes, which are essential for regulating the cell cycle. This
disruption leads to  an accumulation of cells in  the S phase and
an increase in erythrocyte size.47 Importantly, prior research has
established TFDP2 as a target of specific miRNAs. Bone marrow
mesenchymal stem cells alleviate renal injury and fibrosis by
modulating the miR-146a-5p/TFDP2 axis in mouse renal tubu-
lar epithelial cells.48 Furthermore, E2F transcription factors have
been recognized as critical mediators of apoptosis across multi-
ple experimental models and conditions.49,50 Although no existing
literature directly associates TFDP2 with pathogenic mechanisms

in OSA, the biological role of this mediator may explain our find-
ings.  Apoptosis, a  cellular process essential for maintaining cellular
homeostasis and survival, is  a well-described pathogenetic mech-
anism in the context of OSA. Intermittent hypoxia, a hallmark
of OSA, has been implicated in the generation of reactive oxy-
gen  species (ROS), which trigger endoplasmic reticulum stress
and inhibit the synthesis of functional proteins, ultimately pro-
moting apoptotic responses.51 In individuals diagnosed with OSA,
the degree of impairment in  endothelial-dependent vasodilation
correlates with the extent of endothelial cell apoptosis.52 Addi-
tionally, reduced apoptosis and increased expression of  selectin
adhesion molecules have been observed in the polymorphonuclear
leukocytes of patients with OSA, suggesting potential effects of the
condition on inflammatory and immunological changes in  blood
leukocytes.53

More accurate pathway detection, achieved through the inte-
gration of miRNAs, may  facilitate the discovery and development of
novel drug targets aligned with pathogenetic mechanisms. Under-
standing the interplay between the mechanistic pathways and
OSA  could offer crucial insights for designing adjuvant therapeu-
tic strategies to  address the cellular responses to  the physiological
challenges associated with this medical condition. Nevertheless,
our analyses of drug-gene interactions did not reveal any FDA-
approved drugs for TFDP2. Furthermore, examination of external
datasets suggested that  CPAP treatment had no observable impact
on  the levels of miRNA targets. Therefore, the potential of  miRNA-
based therapeutics as novel candidates for treatment is particularly
relevant considering not only the limited repositioning potential
identified in  our  study but also the promising advances in the use
of this technology.13 The regulatory effects of miRNAs on multiple
genes of underlying pathways may  be advantageous in addressing
the multifactorial nature of conditions such as OSA.54 Additional
investigations based on current data are therefore warranted.

Strengths and Limitations

The current investigation has several strengths, including the
adoption of a “real clinical context”, multicentric design, compre-
hensive clinical assessments, the analysis of the plasma miRNome
and the employment of diverse feature selection algorithms. How-
ever, it is  imperative to acknowledge the inherent limitations of  this
study. Although the discovery phase included a subset of 53 sub-
jects, which may appear limited, this sample size is relatively large
compared to typical RNA sequencing studies. Nevertheless, we
acknowledge that this limitation may  affect the robustness of our
findings. To further investigate the relevance of our results, we uti-
lized different external datasets. However, validation in additional
cohorts with more diverse demographic and clinical characteris-
tics and an appropriate sample size  to ensure adequate statistical
power is  essential. A significant limitation of our study is  the lack
of mechanistic investigations to  confirm the biological roles of the
identified miRNAs and their target genes in the pathogenesis of
OSA. While we have established associations between specific miR-
NAs and OSA using various datasets, experimental studies are  vital
to elucidate the causal relationships and underlying signaling path-
ways influenced by these miRNAs. Finally, the criteria for selecting
candidate miRNAs in the discovery and technical validation phases
were intentionally permissive. This approach was  chosen for two
reasons. First, the inherent biology of miRNAs allows them to reg-
ulate biological responses even with minor fluctuations in their
levels,26 which justifies the use of lower fold-change thresholds.
Second, the primary goal of these phases was to “feed” the fea-
ture selection analysis rather than to identify individual miRNAs
specifically associated with OSA.
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Conclusions

Our ML feature selection approach identified three plasma miR-
NAs linked to OSA that, along with their target genes, offer new
insights into the underlying pathogenesis of OSA and reveal novel
regulatory elements of disease and potential drug targets. These
findings hold promise for advancing the development of targeted
disease-modifying agents aimed at improving outcomes.
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21.  Sánchez-Ceinos J, Rangel-Zuñiga OA, Clemente-Postigo M,  Podadera-Herreros
A, Camargo A, Alcalá-Diaz JF, et  al. miR-223-3p as a potential biomarker and
player for adipose tissue dysfunction preceding type 2 diabetes onset. Mol  Ther
Nucleic Acids. 2021;23:1035–52.

22. Ying W, Gao H, Dos Reis FCG, Bandyopadhyay G,  Ofrecio JM,  Luo Z, et  al. MiR-
690,  an exosomal-derived miRNA from M2-polarized macrophages, improves
insulin sensitivity in obese mice. Cell Metab. 2021;33:781–90, e5.

23. Gysi DM, Barabási AL. Noncoding RNAs improve the predictive power of network
medicine. Proc Natl Acad Sci USA. 2023;120, e2301342120.

24. García-Hidalgo MC, González J, Benítez ID, Carmona P, Santisteve S, Pérez-Pons
M,  et al. Identification of circulating microRNA profiles associated with pul-
monary function and radiologic features in survivors of SARS-CoV-2-induced
ARDS.  Emerg Microbes Infect. 2022;11:1537–49.

25.  de Gonzalo-Calvo D,  Karaduzovic-Hadziabdic K,  Dalgaard LT, Dieterich C, Perez-
Pons M,  Hatzigeorgiou A, et  al. Machine learning for catalysing the integration
of noncoding RNA in research and clinical practice. EBioMedicine. 2024;106. Q2

26. Small EM,  Olson EN. Pervasive roles of microRNAs in  cardiovascular biology.
Nature.  2011;469:336–42.

27. Lloberes P, Durán-Cantolla J, Martínez-García MÁ,  Marín JM,  Ferrer A, Cor-
ral  J, et  al. Diagnosis and treatment of sleep apnea–hypopnea syndrome.
Spanish Society of Pulmonology and Thoracic Surgery. Arch Bronconeumol.
2011;47:143–56.

28. Kapur VK, Auckley DH,  Chowdhuri S, Kuhlmann DC, Mehra R, Ramar K,  et al. Clin-
ical practice guideline for diagnostic testing for adult obstructive sleep apnea:

10

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE229362
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE229362
http://dx.doi.org/10.1016/j.arbres.2024.11.011


ARTICLE IN PRESS
G Model

ARBRES 3697 1–11

T. Belmonte, I.D. Benitez, M.C. García-Hidalgo et al. Archivos de Bronconeumología xxx (xxxx) xxx–xxx

an American Academy of Sleep Medicine Clinical Practice Guideline. J  Clin Sleep
Med. 2017;13:479–504.

29. Mediano O, González Mangado N,  Montserrat JM,  Alonso-Álvarez ML,  Almen-
dros I, Alonso-Fernández A, et  al. International consensus document on
obstructive sleep apnea. Arch Bronconeumol. 2022;58:52–68.
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