Journal Information
Vol. 32. Issue 4.
Pages 176-182 (April 1996)
Share
Share
Download PDF
More article options
Vol. 32. Issue 4.
Pages 176-182 (April 1996)
Full text access
Exactitud y validez del umbral láctico frente a otros métodos no invasivos de medición del umbral anaerobio en pacientes con miopatías metabólicas
Accuracy and validity of the lactic acidosis threshold in comparison with other non invasive methods of measuring the anaerobic threshold in patients with metabolic myopathies
Visits
4022
J. Fernández Guerra1, T. Montemayor Rubio, F. Ortega Ruiz, J. Castillo Gómez
Servicio de Neumología. Hospital Universitario Virgen del Rocío. Sevilla
J. Bautista Lorite*, R. Márquez**, L. Jiménez**
* Servicio de Neurología. Hospital Universitario Virgen del Rocío. Sevilla
** Departamento de Bioquímica.Hospital Universitario Virgen del Rocío. Sevilla
This item has received
Article information
Abstract
Bibliography
Download PDF
Statistics

Algunos autores encuentran una mala correlación entre los diferentes métodos de medición del umbral anaerobio (UA), e incluso variabilidad en la medición realizada por diferentes observadores para el mismo método. Desconocemos si este hecho también ocurre en pacientes con miopatías metabólicas (MM).

Objetivo

Determinar la variabilidad intra e interobservador en la medición del UA en pacientes con MM y analizar las diferencias según el método utilizado. Realizamos prueba de esfuerzo en tapiz a 16 pacientes con diferentes MM. El UA se determinó mediante 4 métodos: umbral láctico (UL), semilog-UL, equivalente respiratorio y V-slope, y fue evaluado por 2 observadores, que analizaron los gráficos ordenados de forma aleatoria, en dos ocasiones diferentes, localizando en cada gráfico el UA. El método del equivalente presentó la mejor correlación intraobservador (r’ = 0,95; p < 0,05), siendo mejor que con el método de UL (r’ = 0,68; p < 0,05). Las correlaciones interobservador fueron igualmente aceptables, excepto para el método de la V-slope (r’ = 0,36; p > 0,05). El hallazgo más importante en la comparación entre métodos fue la existencia de diferencias significativas en el VO2 (ml/min) en el UA entre el método del UL y los métodos no invasivos (UL = 1.066; equiv. = 1.312; p < 0,05; UL = 1.095; V-slope = 1.251; p < 0,05).

Conclusión

En los pacientes con MM la variabilidad intra e interobservador es pequeña, siendo ésta mayor con el método de la V-slope. Con los métodos no invasivos, el UA es de aparición más tardía, y por ello son preferibles las determinaciones invasivas (UL).

Palabras clave:
Umbral anaerobio
Miopatías metabólicas
Test de ejercicio cardiopulmonar

Poor correlation among the various methods for measuring anaerobic threshold (AT) has been reported, and some authors have even reported interobserver variability within a single method. It is unknown whether such variability exists in patients with metabolic myopathies (MM).

Objective

To determine intra and interobserver variability in the measurement of AT in patients with MM and analyze the differences for each method used. We enrolled 16 patients with differing forms of MM for exercise testing. AT was determined by 4 methods: lactic threshold (LT), semi-log LT, respiratory equivalent and V-slope. AT was assessed by 2 observers, who analyzed plots in random order on 2 different occasions, locating the AT in each plot. The respiratory equivalent method gave the best intraobserver correlation (r’ = 0.95; p < 0.05) and was superior to the LT method (r’ = 0.68; p < 0.05). Interobserver correlation was equally acceptable for all except the V-slope method (r’ = 0.36; p > 0.05). The most important finding after comparison of the methods was the significant difference in VO2 (ml/min) in AT between the LT method and the non invasive methods (LT = 1,006; respiratory equivalent 1,312; p < 0.05; LT = 1,095; V-slope = 1,251; p < 0.05).

Conclusion

Intra and interobserver variability is slight in patients with MM; the best method in this respect is that of the V-slope. AT appears later with non invasive methods and for that reason, invasive measurement (LT) is preferable.

Key words:
Anaerobic threshold
Metabolic myopathies
Cardiopulmonary exercise test
Full text is only aviable in PDF
Bibliografía
[1.]
K. Wasserman, M.B. Mcllroy.
Detecting the threshold of anaerobic metabolism.
Am J Cardiol, 14 (1964), pp. 844-852
[2.]
K. Wasserman, W.L. Beaver, B.J. Whipp.
Gas exchange theory and the lactic acidosis (anaerobic) threshold.
Circulation, 81 (1990), pp. 14-30
[3.]
K. Wasserman, J.E. Hansen, D.Y. Sue, B.J. Whipp.
Principles of exercise testing and interpretation.
Lea and Febiger, (1987), pp. 34
[4.]
W.L. Beaver, K. Wasserman, B.J. Whipp.
A new method for detec ting the anaerobic threshold by gas exchange.
J Appl Physiol, 60 (1986), pp. 2.020-2.027
[5.]
D.Y. Sue, K. Wasserman, R.B. Moricca, R. Casaburi.
Metabolic acidosis during exercise in patients with chronic obstructive pulmonary disease.
Chest, 94 (1988), pp. 931-938
[6.]
U.J. Magalang, B.J.B. Grant.
Determination of gas exchange threshold by nonparametric regression.
Am J Respir Crit Care Med, 151 (1995), pp. 98-106
[7.]
M.P. Yeh, R.M. Gardner, T.D. Adams, F.G. Yanowitz, R.O. Crapo.
Anaerobic threshold: problems of determination and validation.
J Appl Physiol, 55 (1983), pp. 1.178-1.186
[8.]
M. Shimizu, J. Myers, N. Buchanan, D. Walsh, M. Kraemer, P. McAuley, et al.
The ventilatory threshold: method, protocol, and evaluator agreement.
Am Heart J, 122 (1991), pp. 509-515
[9.]
A. Patessio, R. Casaburi, M. Carone, L. Appendini, C.F. Donner, K. Wasserman.
Comparison of gas exchange, lactate, and lactic acidosis thresholds in patients with chronic obstructive pulmonary disease.
Am Rev Respir Dis, 148 (1993), pp. 622-626
[10.]
B.L. Gladden, J.W. Yates, R.W. Stremel, B.A. Stamford.
Gas exchange and lactate anaerobic thresholds: interand intraevaluator agreement.
J Appl Physiol, 58 (1985), pp. 2.082-2.089
[11.]
M.J. Belman, L.J. Epstein, D. Doornbos, J.D. Elashoff, S.K. Koerner, Z. Mohsenifar.
Noninvasive determinations of the anaerobic threshold. Reliability and validity in patients with COPD.
Chest, 102 (1992), pp. 1.028-1.034
[12.]
J.M. Bogaard, H.F.M. Busch, H.R. Schotte, H. Stam, A. Versprille.
Exercise responses in patients with an enzyme deficiency in the mitochondrial respiratory chain.
Eur Respir J, 1 (1988), pp. 445-452
[13.]
D.L. Elliot, N.R.M. Buist, L. Goldberg, N.G. Kennaway, D. Phil, B.R. Powell, et al.
Metabolic myopathies: evaluation by graded exercise testing.
Medicine, 68 (1989), pp. 163-172
[14.]
American Thoracic Society.
Standarization of spirometry-1987 update.
Am Rev Respir Dis, 136 (1987), pp. 1.285-1.289
[15.]
Recomendaciones de la Sociedad Española de Neumología, Cirugía Torácica (SEPAR).
Normativa para la espirometría forzada.
Ediciones Doyma S.A, (1985),
[16.]
F. Ortega, T. Montemayor, A. Sánchez, F. Cabello, J. Castillo.
Role of cardiopulmonary exercise testing and the criteria used to determine disability in patients with severe chronic obstructive pulmonary disease.
Am J Respir Crit Care Med, 150 (1994), pp. 747-751
[17.]
G.A. Borg.
Phychological basis of perceived exertion.
Med Sci Sports Exerc, 14 (1982), pp. 377-381
[18.]
M. Shaffar, S. Stroupe.
A general method for routine clinical chemistry on the Abbott TDx Analyzer [resumen].
Clin Chem, 129 (1983), pp. 1.251
[19.]
W.L. Beaver, K. Wasserman, B.J. Whipp.
Improved detection of lactate threshold during exercise using a log-log transformation.
J Appl Physiol, 59 (1985), pp. 1.936-1.940
[20.]
W.J. Dixon.
Statistical Analysis.
McGraw Hill, (1983),
[21.]
J.M. Bland, G.A. Altman.
Statistical methods for assessing agreement between two methods of clinical measurements.
Lancet, 1 (1986), pp. 307-310
[22.]
B. Ricci.
Physiological basis of human performance.
Lea and Febiger, (1967),
[23.]
R.G. Hooper, A.R. Thomas, R.A. Kearl.
Mitochondrial enzyme deficiency causing exercise limitation in normal-appearing adults.
Chest, 107 (1995), pp. 317-322
[24.]
R.G. Haller, S.F. Lewis, R.W. Estabrook, S. DiMauro, S. Servidei, D.W. Foster.
Exercise intolerance. lactic acidosis, and abnormal cardiopulmonary regulation in exercise associated with adult skeletal muscle cytochrome oxidase deficiency.
J Clin Invest, 84 (1989), pp. 155-161
[25.]
G.W. Orr, H.J. Green, R.L. Hughson, G.W. Bennet.
A Computer linear regression model to determine ventilatory anaerobic threshold.
J Appl Physiol Respirat Environ Exercise Physiol, 52 (1982), pp. 1.349-1.352
[26.]
S. Chinn.
Repeatability and method comparison.
Thorax, 46 (1991), pp. 454-456
[27.]
K. Wasserman, B.J. Whipp.
Exercise physiology in health and disease.
Am Rev Respir Dis, 112 (1975), pp. 219-249
[28.]
R.G. Haller, K.G. Henriksson, L. Jorfeldt, E. Hultman, R. Wibom, K. Sahlin, et al.
Deficiency of skeletal muscle succinate dehydrogenase and aconitase.
Pathophysiology of exercise. J Clin Invest, 88 (1991), pp. 1.197-1.206
[29.]
W.J. DePaso, R.H. Winterbauer, J.A. Lusk, D.F. Dreis, S.C. Springmeyer.
Chronic dyspnea unexplained by history, physical examination, chest roentgenogram, and spirometry-analysis of a seven years experience.
Chest, 100 (1991), pp. 1.293-1.299

Este trabajo ha sido subvencionado con una beca FEPAR 1993.

Copyright © 1996. Sociedad Española de Neumología y Cirugía Torácica
Archivos de Bronconeumología
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?