Journal Information
Vol. 46. Issue 5.
Pages 244-254 (May 2010)
Share
Share
Download PDF
More article options
Vol. 46. Issue 5.
Pages 244-254 (May 2010)
Review article
Full text access
Usefulness of Macrolides as Anti-inflammatories in Respiratory Diseases
Utilidad de los macrólidos como antiinflamatorios en las enfermedades respiratorias
Visits
9274
Daniel Sevilla-Sáncheza,
Corresponding author
danielsevillasanchez@gmail.com

Corresponding author.
, Dolors Soy-Munera,b, Néstor Soler-Porcarb,c
a Servicio de Farmacia, Hospital Clínic de Barcelona, Barcelona, Spain
b CIBER de Enfermedades Respiratorias, Hospital Clínic de Barcelona, Barcelona, Spain
c Servicio de Neumología, Institut Clínic del Tórax, Hospital Clínic de Barcelona, Barcelona, Spain
This item has received
Article information
Abstract
Bibliography
Download PDF
Statistics
Abstract

The macrolides are antibiotics that, besides their anti-bacterial action, have an anti-inflammatory effect, by decreasing the activity of the immune cells and bacteria cell changes.

An increase the survival of patients suffering from diffuse panbronchiolitis was already seen in the 1980s, after being treated with erythromycin. Currently, the use of macrolides in various chronic inflammatory diseases has increased significantly. Clinical improvements associated to the administration of macrolides have been observed in diseases such as, cystic fibrosis, asthma, and bronchiectasis.

However, despite the apparent clinical benefit they seem to provide, the published results up until now are controversial and conclusive results are unable to be obtained. This means that further clinical trials are necessary to confirm or refute the long-term use of these drugs, which are not free of adverse effects, mainly the appearance of resistant bacteria.

Keywords:
Macrolides
Antibiotic
Anti-inflammatory
Respiratory disease
Microbial resistance
Resumen

Los macrólidos son antibióticos que además de su acción antibacteriana pueden presentar un cierto efecto antiinflamatorio por disminución de la actividad de las células inmunitarias y alteración de las células bacterianas.

Ya en los años 80 se observó un aumento de la supervivencia en pacientes afectados de panbronquiolitis difusa después de tratarse con eritromicina. En la actualidad, el uso de macrólidos en diferentes enfermedades de carácter inflamatorio crónico ha aumentado significativamente. En la fibrosis quística, el asma, las bronquiectasias, entre otras, se han observado mejoras clínicas asociadas a la administración de macrólidos.

Sin embargo, y a pesar del aparente beneficio clínico que parecen aportar, los resultados publicados hasta la fecha son controvertidos y no permiten obtener resultados concluyentes. Esto hace necesario realizar futuros ensayos clínicos para confirmar o rebatir el uso a largo plazo de estos fármacos, que no están exentos de efectos adversos, principalmente la aparición de especies bacterianas resistentes.

Palabras clave:
Macrólidos
Antibiótico
Antiinflamatorio
Enfermedad respiratoria
Resistencias microbianas
Full text is only aviable in PDF
References
[1.]
R.H. Meade.
Drug therapy reviews: Antimicrobial spectrum, pharmacology and therapeutic use of erythromycin and its derivatives.
Am J Hosp Pharm, 36 (1979), pp. 1185-1189
[2.]
J.M. Zuckerman, K.M. Kaye.
The newer macrolides: Azithromycin and clarithromycin.
Infect Dis Clin North Am, 9 (1995), pp. 731-745
[3.]
E.B. Wilms, D.J. Touw, H.G.M. Heijerman.
Pharmacokinetics of azithromycin in plasma, blood, polymorphonuclear neutrophils and sputum during long-term therapy in patients with cystic fibrosis.
Ther Drug Monit, 28 (2006), pp. 219-225
[4.]
P. Beringer, K.M.Y. Huynh, J. Kriengkauykiat, K. Bi, N. Hoem, S. Louie, et al.
Absolute bioavailability and intracellular pharmacokinetics of azithromycin in patients with cystic fibrosis.
Antimicrob Agents Chemother, 49 (2005), pp. 5013-5017
[5.]
M.T. Labro, H. Abdelghaffar.
Immunomodulation by macrolide antibiotics.
J Chemother, 13 (2001), pp. 3-8
[6.]
A. Ianaro, A. Ialenti, P. Maffia, L. Sautebin, L. Rombola, R. Carnuccio, et al.
Antiinflammatory activity of macrolide antibiotics.
J Pharmacol Exp Ther, 292 (2000), pp. 156-163
[7.]
J. Tamaoki, K. Takeyama, E. Tagaya, K. Konno.
Effect of clarithromycin on sputum production and its rheological properties in chronic respiratory tract infections.
Antimicrob Agents Chemother, 39 (1995), pp. 1688-1690
[8.]
E. Tagaya, J. Tamaoki, M. Kondo, A. Nagai.
Effect of a short course of clarithromycin therapy on sputum production in patients with chronic airway hypersecretion.
Chest, 122 (2002), pp. 213-218
[9.]
S.K. Goswami, S. Kivity, Z. Marom.
Erithromycin inhibits respiratory glycoconjugate secretion from human airways in vitro.
Am Rev Respir Dis, 141 (1990), pp. 72-78
[10.]
H. Ninomiya, Y. Ichikawa, M. Kinoshita, K. Oizumi.
Effects of erythromycin on neutrophil chemotaxis to the lung tissue.
J Clin Exp Med, 159 (1991), pp. 439-440
[11.]
Y. Ichikawa, H. Ninomiya, H. Koga, M. Tanaka, M. Kinoshita, N. Tokunaga, et al.
Erythromycin reduces neutrophils and neutrophil-derived elastolytic-like activity in the lower respiratory tract of bronchiolitis patients.
Am Rev Respir Dis, 146 (1992), pp. 196-203
[12.]
Y. Ishimatsu, J. Kadota, T. Isashita, T. Nagata, H. Ishii, C. Shikuwa, et al.
Macrolide antibiotics induce apoptosis of human peripheral lymphocytes in vitro.
Int J Antimicrob Agents, 24 (2004), pp. 247-253
[13.]
S. Mizuenoe, J. Kadota, I. Tokimatsu, K. Kishi, H. Nagai, M. Nasu.
Clarithromycin and azithromycin induce apoptosis of activated lymphocytes via down-regulation of Bcl-xL.
Int Immunopharmacol, 4 (2004), pp. 1201-1207
[14.]
S. Hodge, G. Hodge, S. Brozyna, H. Jersmann, M. Holmes, P.N. Reynolds.
Azithromycin increases phagocytosis of apoptotic bronchial epithelial cells by alveolar macrophages.
Eur Respir J, 28 (2006), pp. 486-495
[15.]
Y.T. Jun, H.J. Kim, M.J. Song, J.H. Lim, D.G. Lee, K.J. Han, et al.
In vitro effects of ciprofloxacin and roxithromycin on apoptosis of jurkat T lymphocytes.
Antimicrob Agents Chemother, 47 (2003), pp. 1161-1164
[16.]
T. Yamaryo, K. Oishi, H. Yoshimine, Y. Tsuchihashi, K. Matsushima, T. Nagatake.
Fourteen-member macrolides promote the phosphatidylserine receptordependent phagocytosis of apoptotic neutrophils by alveolar macrophages.
Antimicrob Agents Chemother, 47 (2003), pp. 48-53
[17.]
H.C. Lin, C.H. Wang, C.Y. Liy, C.T. Yu, H.P. Kuo.
Erytrhomycin inhibits beta-2-integrins (CD11b/CD18) expression, interleukin-8 release and intracellular oxidative metabolism in neutrophils.
Respir Med, 94 (2000), pp. 654-660
[18.]
O.A. Khair, J.K. Devalia, M.M. Abdelaziz, R.J. Sapsford, R.J. Davies.
Effect of erythromycin on Haemophillus influenzae endotoxin-induced release of IL-6, IL-8 and sICAM-1 by cultured human bronquial epithelial cells.
Eur Respir J, 8 (1995), pp. 1451-1457
[19.]
J. Akamatsu, M. Yamawaki, T. Horio.
Effects of roxithromycin on adhesion molecules expressed on endothelial cells of the dermal microvasculature.
J Int Med Res, 29 (2001), pp. 523-527
[20.]
N. Matsuoka, K. Eguchi, A. Kawakami, M. Tsuboi, Y. Kawabe, T. Aoyagi, et al.
Inhibitory effect of clarithromycin on co-stimulatory molecule expression and cytokine production by synovial fibroblast-like cells.
Clin Exp Immunol, 104 (1996), pp. 501-508
[21.]
K. Morikawa, H. Watabe, M. Araake.
Modulatory effect of antibiotics on cytokine production by human monocytes in vitro.
J Antimicrob Agents Chemother, 40 (1996), pp. 1366-1370
[22.]
H. Suzaki, K. Asano, S. Ohki, K. Kanai, T. Mizutani, T. Hisamitsu.
Suppressive activity of a macrolide antibiotic, roxithromycin, on pro-inflammatory cytokine production in vitro and in vivo.
Mediators Inflamm, 8 (1999), pp. 199-204
[23.]
A.A. Khan, T.R. Slifer, F.G. Araujo.
Effect of clarithromycin and azithromycin on production of cytokines by human monocytes.
Int J Antimicrob Agents, 11 (1999), pp. 121-132
[24.]
J.M. Schultz, P. Speelman, C.E. Hack, W.A. Buurman, S.J. Van Deventer, T. Van Der Poll.
Intravenous infusion of erythromycin inhibits CXC chemokine production, but augments neutrophil degranulation in whole blood stimulated with Streptococcus pneumoniae.
J Antimicrob Chemother, 46 (2000), pp. 235-240
[25.]
T. Kohyama, H. Takizawa, S. Kawasaki, N. Akiyama, M. Sato, K. Ito.
Fourteen-member macrolides inhibit interleukin-8 release by human eosinophils from atopic donors.
Antimicrob Agents Chemother, 43 (1999), pp. 907-911
[26.]
K. Asano, K. Kamakazu, T. Hisamitsu, H. Suzake.
Modulation of Th2 type cytokine production from human peripheral blood leukocytes by a macrolide antibiotic, roxithromycin, in vitro.
Int Immunopharmacol, 1 (2001), pp. 1913-1921
[27.]
C. Cigana, B.M. Assael, P. Melotti.
Azithromycin selectively reduces tumor necrosis factor alpha levels in cystic fibrosis airway epithelial cells.
Antimicrob Agents Chemother, 51 (2007), pp. 975-981
[28.]
O. Culic, I. Erakovic, K. Cepelak, K. Barisic, K. Brajsa, Z. Ferencic, et al.
Azitrhomycin modulates neutrophil function and circulating inflammatory mediators in healthy human subjects.
Eur J Pharmacol, 450 (2002), pp. 277-289
[29.]
I. Tkalcevic, V.B. Bosnjak, B. Hrvacic, M. Bosnar, N. Marjanovic, Z. Rerencic, et al.
Antiinflammatory activity of azithromycin attenuates the effects of lipopolysaccharide administration in mice.
Eur J Pharmacol, 539 (2006), pp. 131-138
[30.]
M. Miyazaki, M. Zaitsu, K. Honjo, E. Ishii, Y. Hamasaki.
Macrolide antibiotics inhibit prostaglandin E2 synthesis and mRNA expression of prostaglandin synthetic enzymes in humans leukocytes.
Prostaglandins Leukot Essent Fatty Acids, 69 (2003), pp. 229-235
[31.]
H. Yamasawa, K. Oshikawa, S. Ohno, Y. Sugiyama.
Macrolides inhibit epithelial cellmediated neutrophil survival by modulating granulocyte macrophage colonystimulating factor release.
Am J Respir Cell Mol Biol, 30 (2004), pp. 569-575
[32.]
T. Mitsuyana, T. Tanaka, K. Hidaka, M. Abe, N. Hara.
Inhibition by erythromycin of superoxide anion production by human polymorphonuclear leukocytes through the action of cyclic AMP-dependent protein kinase.
Respiration, 62 (1995), pp. 269-273
[33.]
H. Abdelghaffar, C. Babin-Chevaye, M.T. Labro.
The macrolide roxithromycin impairs NADPH oxidase activation and alters translocation of its cytosolic components to the neutrophil membrane in vitro.
Antimicrob Agents Chemother, 49 (2005), pp. 2986-2989
[34.]
H. Terao, K. Asano, K. Kanai, Y. Kyo, S. Watanabe, T. Hisamitsu, et al.
Suprressive activity of macrolide antibiotics on nitric oxide production by lipopolysaccharide stimulation in mice.
Mediators Inflamm, 12 (2003), pp. 195-202
[35.]
P.D. Borszcz, D. Befus, R. Moqbel, D.D. Sin, D.J. Adamko, S.FP. Man, et al.
Effects of clarithromycin on inflammatory cell mediator release and survival.
Chemotherapy, 51 (2005), pp. 206-210
[36.]
Y. Aoki.
Kao PN Erythromycin inhibits transcriptional activation of NF-kappaB, but not NFAT, through calcineurin-independent signaling in T cells.
Antimicrob Agents Chemother, 43 (1999), pp. 2678-2684
[37.]
S. Cho, Y. Urata, T. Ilada.
Glutathione down-regulates the phosphorylation of I kappa B: Auto-loop regulation of the NF-kappa B-mediated expression of NF-kB subunits by TNF-alpha in mouse vascular endotelial cells.
Biochem Biophys Res Commun, 253 (1998), pp. 104-108
[38.]
Z.H. Aghai, A. Kode, J.G. Saslow, T. Nakhla, S. Farhath, G.E. Stahl, et al.
Azitrhomycin suppresses activation of nuclear factor kappa B and synthesis of pro-inflammatory cytokines in tracheal aspirate cells from premature infants.
Pediatr Res, 62 (2007), pp. 483-488
[39.]
M. Desaki, H. Okazaki, T. Sunazuka, S. Omura, K. Yamamoto, H. Takizawa.
Molecular mechanisms of anti-inflammatory action of erythromycin in human bronchial epithelial cells: Possible role in the signaling pathway that regulates nuclear factor-kappaB activation.
Antimicrob Agents Chemother, 48 (2004), pp. 1581-1585
[40.]
T. Kikuchi, K. Hagiwara, Y. Honda, K. Gomi, T. Kobayashi, H. Takahashi, et al.
Clarithromycin suppresses lipopolysaccharide-induced interleukin-8 production by human monocytes through AP-1 and NF-kappa B transcription factors.
J Antimicrob Chemother, 49 (2002), pp. 745-755
[41.]
M. Shinkai, J. Tamaoki, H. Kobayashi, S. Kanoh, K. Motoyoshi, T. Kute, et al.
Clarithromycin delays progression of bronchial epithelial cells from G1 phase to S phase and delays cell growth via extracellular signal-regulated protein kinase suppression.
Antimicrob Agents Chemother, 50 (2006), pp. 1738-1744
[42.]
C. Dong, R.J. Davis, R.A. Flavell.
Signaling by the JNK group of MAP kinases, c-jun N-terminal Kinase.
J Clin Immunol, 21 (2001), pp. 253-257
[43.]
Y. Imamura, K. Yanagihara, Y. Mizuta, M. Seki, H. Ohno, Y. Higashiyama, et al.
Azithromycin inhibits MUC5AC production induced by the Pseudomonas aeruginosa autoinducer N-(3-Oxododecanoyl) homoserine lactone in NCI-H292 Cells.
Antimicrob Agents Chemother, 48 (2004), pp. 3457-3461
[44.]
Y. Kaneko, K. Yanagihara, M. Seki, M. Kuroki, Y. Miyazaki, Y. Hirakata, et al.
Clarithromycin inhibits overproduction of muc5ac core protein in murine model of diffuse panbronchiolitis.
Am J Physiol Lung Cell Mol Physiol, 285 (2003), pp. L847-L853
[45.]
J.Y. Lallemand, V. Stoven, J.P. Annereau, J. Boucher, S. Blanquet, J. Barthe, et al.
Induction by antitumoral drugs of proteins that functionally complement CFTR: A novel therapy for cystic fibrosis?.
Lancet, 350 (1997), pp. 711-712
[46.]
L. Altschuler.
Azitromycin, the multidrug-resistant protein and cystic fibrosis.
[47.]
U. Pradal, A. Delmarco, M. Morganti, M. Cipolli, E. Mini, G. Cazzola.
Long-term azithromycin in cystic fibrosis: Another possible mechanism of action?.
J Chemother, 17 (2005), pp. 393-400
[48.]
C. Cigana, E. Nicolis, M. Pasetto, B.M. Assael, Melotti.
Effects of azithromycin on the expression of ATP binding cassette transporters in epithelial cells from the airways of cystic fibrosis patients.
J Chemother, 19 (2007), pp. 643-649
[49.]
V. Asgrimsson, T. Gudjonsson, G.H. Gudmundsson, O. Baldursson.
Novel effects of azithromycin on tight junction proteins in human airway epithelia.
Antimicrob Agents Chemother, 50 (2006), pp. 1805-1812
[50.]
M. Rotschild, N. Elias, D. Berkowitz, S. Pollak, M. Shinawi, R. Beck, et al.
Autoantibodies against bactericidal/permeability-increasing protein (BPI-ANCA) in cystic fibrosis patients treated with azithromycin.
Clin Exp Med, 5 (2005), pp. 80-85
[51.]
K. Tateda, Y. Ishii, T. Matsumoto, T. Kobayashi, S. Miyazaki, K. Yamaguchi.
Potential of macrolide antibiotics to inhibit protein synthesis of Pseudomonas aeruginosa: Suppression of virulence factors and stress response.
J Infect Chemother, 6 (2000), pp. 1-7
[52.]
K. Tateda, Y. Ishii, T. Matsumoto, N. Furuya, M. Nagashima, T. Matsunaga, et al.
Direct evidence for antipseudomonal activity of macrolides: Exposure dependent bactericidal activity and inhibition of protein synthesis by erythromycin, clarithromycin, and azithromycin.
Antimicrob Agents Chemother, 40 (1996), pp. 2271-2275
[53.]
R.J. Gillis, B.H. Iglewski.
Azithromycin retards Pseudomonas aeruginosa biofilm formation.
J Clin Microbiol, 42 (2004), pp. 5842-5845
[54.]
R.J. Gillis, K.G. White, K.H. Choi, V.E. Wagner, H.P. Schweizer, B.H. Iglewski.
Molecular basis of azithromycin-resistant Pseudomonas aeruginosa biofilms.
Antimicrob Agents Chemother, 49 (2005), pp. 3858-3867
[55.]
H. Donabedian.
Quorum sensing and its relevance to infectious diseases.
J Infect, 46 (2003), pp. 207-214
[56.]
M. Hentzer, H. Wu, J.B. Andersen, K. Riedel, T.B. Rasmussen, N. Bagge, et al.
Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors.
EMBOJ, 22 (2003), pp. 3803-3815
[57.]
Y. Nalca, L. Jansh, F. Bredenbruch, R. Geffers, J. Buer, S. Haussler.
Quorum-sensing antagonistic activities of azithromycin in Pseudomonas aeruginosa PAO1: A global approach.
Antimicrob Agents Chemother, 50 (2006), pp. 1680-1688
[58.]
K. Tateda, R. Comte, J.C. Pechere, T. Kohler, K. Yamaguchi, C. Van Delden.
Azithromycin inhibits quorum-sensing in Pseudomonas aeruginosa.
Antimicrob Agents Chemother, 45 (2001), pp. 1930-1933
[59.]
K. Tateda, Y. Ishii, S. Kimura, M. Horikawa, S. Miyairi, K. Yamaguchi.
Supression of Pseudomonas aeruginosa quorum-sensing systems by macrolides: A promising strategy or an oriental mystery?.
J Infect Chemother, 13 (2007), pp. 357-367
[60.]
K. Yanagihara, K. Tomono, Y. Imamura.
Effect of clarithromyin on chronic respiratory infection caused by Pseudomonas aeruginosa with biofilm formation in an experimental murine model.
J Antimicrob Chemother, 49 (2002), pp. 867-870
[61.]
Y. Mitsuya, S. Kawai, H. Kobayashi.
Influence of macrolides on guanosine diphospho- D-mannose dehydrogenase activity in Pseudomonas biofilm.
J Infect Chemother, 6 (2000), pp. 45-50
[62.]
K. Kawamura-Sato, Y. Linuma, T. Hasegawa, T. Horii, T. Yamashino, M. Ohta.
Effect of sub-inhibitory concentrations of macrolides on expresion of flagellin in Pseudomonas aeruginosa and Proteus mirabilis.
Antimicrob Agents Chemother, 44 (2000), pp. 2869-2872
[63.]
S. Spector, F. Katz, R. Farr.
Troleandomycin: Effectiveness in steroid dependent asthma and bronchitis.
J Allergy Clin Immunol, 54 (1974), pp. 228-231
[64.]
S. Kudoh, A. Azuma, M. Yamamoto.
Improvement of survival in patients with diffuse panbronchiolitis treated with low-dose erythromycin.
Am J Respir Crit Care Med, 157 (1998), pp. 1829-1832
[65.]
N. Hoiby.
Diffuse panbronchiolitis and cystic fibrosis: East meets West.
Thorax, 49 (1994), pp. 531-532
[66.]
M.J. Schultz.
Macrolide activities beyond their antimicrobial effects: Macrolides in diffuse panbronchiolitis and cystic fibrosis.
J Antimicrob Chemother, 54 (2004), pp. 21-28
[67.]
J.I. Kadota, O. Sakito, S. Kohno.
A mechanism of erythromycin treatment in patients with diffuse panbrochiolitis.
Am Rev Respir Dis, 147 (1993), pp. 153-159
[68.]
J. Kadota, H. Mukae, H. Ishii.
Long-term efficacy and safety of clarithromycin treatment in patients with diffuse panbronchiolitis.
Respir Med, 97 (2003), pp. 844-850
[69.]
A. Jaffé, J. Francis, M. Rosenthal, A. Bush.
Long-term azithromycin may improve lung function in children with cystic fibrosis.
[70.]
M.I. Anstead, R.J. Kuhn, L.H. Hartford, L. Craigmyle, S. Halsey, J.F. Kanga.
Effect of chronic azithromycin on lung fuction in cystic fibrosis.
Pediatr Pulmonol, 19 (1999), pp. 283-284
[71.]
M.I. Anstead, R.J. Kuhn, S. Halsey, J.F. Kanga.
Prolonged effect of chronic azithromycin therapy on lung funtiton in cystic fibrosis.
Pediatr Pulmonol, 20 (2000), pp. 244a
[72.]
O.M. Pirzada, C.J. Taylor.
Long term macrolide antibiotics improves pulmonary function in cystic fibrosis.
Pediatr Pulmonol, 19 (1999), pp. 263
[73.]
C.R. Hansen, T. Pressler, S. Lanng, N. Hoiby, C. Koch.
Effects of long-term azitromycin treatment of patient with CF and chronic P. aeruginosa infection.
Pediatric Pulmonol, 20 (2000), pp. 244
[74.]
O.M. Pirzada, J. McGaw, C.J. Taylor, M.L. Everard.
Improved lung function and body mass index associated with long-term use of macrolide antibiotics.
J Cystic Fibrosis, 2 (2003), pp. 69-71
[75.]
C.R. Hansen, T. Pressler, C. Koch, N. Hoiby.
Long-term azitromycin treatment of cystic fibrosis patients with chronic Pseudomonas aeruginosa infection;an observational cohort study.
J Cyst Fibros, 4 (2005), pp. 35-40
[76.]
J. Wolter, S. Seeney, S. Bell, P. Masel, J. McCormack.
Effect of long-term treatment with azithromycin on disease parameters in cystic fibrosis: A randomized trial.
Thorax, 57 (2002), pp. 212-216
[77.]
A. Equi, I.M. Balfour-Lynn, A. Bush, M. Rosenthal.
Long term azithromycin in children with cystic fibrosis: A randomised, placebo-controlled crossover trial.
Lancet, 360 (2002), pp. 978-984
[78.]
L. Saiman, B.C. Marshall, N. Mayer-Hamblett, J.K. Burns, A.L. Quittner, A. Cibene Dam, et al.
Azithromycin in patients with cystic fibrosis chronically infected with pseudomonas aeruginosa: A randomized controlled trial.
JAMA, 290 (2003), pp. 1749-1756
[79.]
D. Nguyen, M.J. Emond, N. Mayer-Hamblett, L. Saiman, B.C. Marshall, J.L. Burns.
Clinical response to azithromycin in cystic fibrosis correlates with in intro effects on Pseudomonas aeruginosa phenotypes.
Paediatr Pulmonol, 42 (2007), pp. 533-541
[80.]
A. Clement, A. Tamalet, E. Leroux, S. Ravilly, B. Fauroux, J.P. Jais.
Long term effects of azithromycin in patients with cystic fibrosis: A double blind, placebo controlled trial.
Thorax, 61 (2006), pp. 895-902
[81.]
J. McCormack, S. Bell, S. Senini, K. Walmsley, K. Patel, C. Wainwright, et al.
Daily versus weekly azithromycin in cystic fibrosis patients.
Eur Respir J, 30 (2007), pp. 487-495
[82.]
G. Steinkamp, S. Schmitt-Grohe, G. Döring, D. Staab, D. Pfründer, G. Beck, et al.
Onceweekly azithromycin in cystic fibrosis with chronic Pseudomonas aeruginosa infection.
Respir Med, 102 (2008), pp. 1643-1653
[83.]
C.L. Ordoñez, M. Stulbarg, H. Grundlang, J.T. Liu, H.A. Boushey.
Effect of clarithromycin on airway obstruction and inflammatory markers in induced sputum in cystic fibrosis: A pilot study.
Pediatr Pulmonol, 32 (2001), pp. 29-37
[84.]
L. Richeldi, G. Ferrara, L.M. Fabbri, T.J. Lasserson, P.G. Gibson.
Macrólidos para el asma crónica (revisión Cochrane traducida).
La Biblioteca Cochrane Plus, (2007),
[85.]
J.L. Simpson, H. Powell, M.J. Boyle, R.J. Scott, P.G. Gibson.
Clarithromycin targets neutrophilic airway inflammation in refractory asthma.
Am J Respir Crit Care Med, 177 (2008), pp. 148-155
[86.]
M. Fonseca-Aten, P.k. Okada, K.L. Bowlware, S. Chavez-Bueno, A. Mejias, A.M. Rios, et al.
Effect of clarithromycin on cytokines and chemokines in children with an acute exacerbation of recurrent wheezing: A double-blind, randomized, placebocontrolled trial.
Ann Allergy Asthma Immunol, 97 (2006), pp. 457-463
[87.]
G.L. Piacentini, D.G. Peroni, A. Bodini, R. Pigozzi, S. Costella, A. Loiacono, et al.
Azithromycin reduces bronchial hyper-responsiveness and neutrophilic airway inflammation in asthmatic children: A preliminary report.
Allergy Asthma Proc, 28 (2007), pp. 194-198
[88.]
D.L. Hahn, M.B. Plane, O.S. Mahdi, G.I. Byrne.
Secundary outcomes of a pilot randomized trial of azithromycin treatment for asthma.
PLoS Clin Trials, 1 (2006), pp. e11
[89.]
M.J. Parnham, O. Culic, V. Erakovic, V. Munic, S. Popovic-Grle, K. Barisic, et al.
Modulation of neutrophil and inflammation markers in chronic obstructive pulmonary disease by short term azithromycin treatment.
Eur J Pharmacol, 517 (2005), pp. 132-143
[90.]
I. Basyigit, F. Yidiz, S.K. Ozkara, E. Yildirim, H. Boyaci, A. Ilgazli.
The effect of clarithromycin on inflammatory markers in chronic obstructive pulmonary disease: Preliminary data.
Ann Pharmacother, 38 (2004), pp. 1400-1405
[91.]
S. Hodge, G. Hodge, H. Jersmann, G. Matthews, J. Ahern, M. Holmes, et al.
Azithromycin improves macrophage phagocytic function and expression of mannose receptor in COPD.
Am J Respir Crit Care Med, 178 (2008), pp. 139-148
[92.]
S. Hodge, G. Hodge, S. Brozyna, H. Jersmann, M. Holmes, P.N. Reynolds.
Azithromycin increases phagocytosis of apoptotic bronchial epithelial cells by alveolar macrophages.
Eur Respir J, 28 (2006), pp. 486-495
[93.]
D. Benarjee, S. Hussain, O. Khair.
The effects of oral clarithromycin on airway inflammation in moderate to severe chronic obstructive pulmonary disease (COPD): A double blind randomized controlled study.
Eur Respir J, 18 (2001), pp. 338S
[94.]
D. Banerjee, B. Clarke, S.L. Hill.
The effect of 3 months oral clarithromycin on sputum bacterial colonization in stable moderate to severe chronic obstructive pulmonary disease (COPD).
Eur Respir J, 18 (2001), pp. 153S
[95.]
D. Banarjee, O. Khair, D. Honeybourne.
The relationship between pulmonary function, health status, shuttle walk distance with sputum airway inflammation in moderate to severe chronic obstructive pulmonary disease (COPD).
Eur Respir J, 18 (2001), pp. 94S
[96.]
T.M.A. Wilkison, T.A.R. Seemungal, R. Sapsford, J.R. Hurst, W. Perera, J.A. Wedzicha, et al.
Effect of long-term erythromycin in COPD trial (ELECT): Exacerbations and inflamation.
Thorax, 62 (2007), pp. S115
[97.]
T.A.R. Seemungal, T.M.A. Wilkison, J.R. Hurst, W. Perera, R. Sapsford, J.A. Wedzicha.
Long-term erythromycin therapy is associated with decreased chronic obstructive pulmonary disease exacerbations.
Am J Respir Crit Care Med, 178 (2008), pp. 1139-1147
[98.]
K.W.T. Tsang, P.I. Ho, Kn. Chan.
A pilot study of low-dose erythromycin in bronchiectasis.
Eur Resp Journ, 13 (1999), pp. 361-364
[99.]
G. Davies, R. Wilson.
Prophylactic antibiotic treatment of bronchiectasis with azithromycin.
Thorax, 59 (2004), pp. 540-541
[100.]
Y.Y. Koh, M.H. Lee, Y.H. Sun.
Effect of roxithromycin on airway responsiveness in children with bronchiectasis: A double-blind, placebo-controlled study.
Eur Resp Journ, 10 (1997), pp. 994-999
[101.]
E. Yalçin, N. Kiper, U. Ozçelik, Do€ru D., P. Firat, A. Sahin, et al.
Effects of claritromycin on inflammatory parameters and clinical conditions in children with bronchiectasis.
J Clin Pharm Ther, 31 (2006), pp. 49-55
[102.]
A.A. Cymbala, L.C. Edmonds, M.A. Bauer, P.J. Jederlinic, J.J. May, J.M. Victory, et al.
The disease-modifying effects of twice-weekly oral azithromycin in patients with bronchiectasis.
Treat Respir Med, 4 (2005), pp. 117-122
[103.]
L. Maiz Carro.
Long-term treatment with azithromycin in a patient with idiopathic bronchiectasis.
Arch Bronconeumol, 41 (2005), pp. 295
[104.]
M. Vila-Justribo, J. Dorca-Sargatal, S. Bello-Dronda.
Bronchiectasis and macrolides.
Arch Bronconeumol, 42 (2006), pp. 206
[105.]
G.A. Anwar, S.C. Bourke, G. Afolabi, P. Middleton, C. Ward, R.M. Rutherford.
Effects of long-term low-dose azithromycin in patients with non-CF bronchiectasis.
Respir Med, 102 (2008), pp. 1494-1496
[106.]
Y. Ichikawa, H. Ninomiya, M. Katsuki, M. Hotta, M. Tanaka, K. Oizumi.
Low-dose/long-term erythromycin for treatment of bronchiolitis obliterans organizing pneumonia (BOOP) [Abstract].
Kurume Med J, 40 (1993), pp. 65-67
[107.]
T. Ishii, A. Manabe, Y. Ebihara, T. Ueda, H. Yoshino, T. Mitsui, et al.
Improvement in bronchiolitis obliterans organizing pneumonia in a child after allogeneic bone marrow transplantation by a combination of oral prednisolone and low dose erythromycin.
Bone Marrow Transplant, 26 (2000), pp. 907-910
[108.]
S.G. Gerhardt, J.F. McDyer, R.E. Girgis, J.V. Conte, S.C. Yang, J.B. Orens.
Maintenance azithromycin therapy for bronchiolitis obliterans syndrome: Results of a pilot study.
Am J Respir Crit Care Med, 168 (2003), pp. 121-125
[109.]
G.M. Verleden, L.J. Dupont.
Azithromycin therapy for patients with bronchiolitis obliterans syndrome after lung transplantation.
Transplantation, 77 (2004), pp. 1465-1467
[110.]
M. Khalid, A. Al Saghir, S. Saleemi, S. Al Dammas, M. Zeitouni, A. Al Mobeireek, et al.
Azithromycin in bronchiolitis obliterans complicating bone marrow transplantation: A preliminary study.
Eur Respir J, 25 (2005), pp. 490-493
[111.]
B. Yates, D.M. Murphy, I.A. Forrest, C. Ward, R.M. Rutherford, A.J. Fisher, et al.
Azithromycin reverses airflow obstruction in established bronchiolitis obliterans syndrome.
Am J Respir Crit Care Med, 172 (2005), pp. 772-775
[112.]
G.M. Verleden, B.M. Vanaudenaerde, L.J. Dupont, D.E. Van Raemdonck.
Azithromycin reduces airway neutrophilia and interleukin-8 in patients with bronchiolitis obliterans syndrome.
Am J Respir Crit Care Med, 174 (2006), pp. 566-570
[113.]
J. Gottlieb, J. Szangolies, T. Koehnlein, H. Golpon, A. Simon, T. Welte.
Long-term azithromycin for bronchiolitis obliterans syndrome after lung transplantation.
Transplantation, 85 (2008), pp. 36-41
[114.]
D. Shitrit, D. Bendayan, S. Gidon, M. Saute, I. Bakal, M.R. Kramer.
Long-term azithromycin use for treatment of bronchiolitis obliterans syndrome in lung transplant recipients.
J Heart Lung Transplant, 24 (2005), pp. 1440-1443
[115.]
L.F. Angel, D. Levine, J. Sánchez, S. Levine.
Azithromycin in bronchiolitis obliterans: Is the evidence strong enough?.
Am J Respir Crit Care Med, 173 (2006), pp. 465-466
[116.]
S. Kanazawa, S. Nomura, M. Muramatsu, K. Yamaguchi, S. Fukuhara.
Azithromycin and bronchiolitis obliterans.
Am J Respir Crit Care Med, 169 (2004), pp. 654-655
[117.]
B.M. Vanaudenaerde, W.A. Wuyts, N. Geudens, L.J. Dupont, K. Schoofs, S. Smeets, et al.
Macrolides inhibit IL-17-induced IL-8 and 8-isoprostane release from human airway smooth muscle cells.
Am J Transplant, 7 (2007), pp. 76-82
[118.]
D.E. Stover, D. Mangino.
Macrolides: A treatment alternative for bronchiolitis obliterans organizing pneumonia?.
Chest, 128 (2005), pp. 3611-3617
[119.]
S.J. Phaff, H.A.W.M. Tiddens, H.A. Werbrugh, A. Ott.
Macrolide resistance of Staphylococcus aureus and Haemophilus species associated with long-term azithromycin use in cystic fibrosis.
J Antimicrob Chemother, 57 (2006), pp. 741-746
[120.]
G.A. Tramper-Straders, T.F. Wolfs, A. Fleer, J.L. Kimpen, C.K. Van der Ent.
Maintenance azithromycin treatment in pediatric patients with cystic fibrosis: Long-term outcomes related to macrolide resistance and pulmonary function.
Pediatr Infect Dis J, 26 (2007), pp. 8-12
[121.]
K. Kasahara, E. Kita, K. Maeda, K. Uno, M. Konishi, E. Yoshimoto, et al.
Macrolide resistance of Streptococcus pneumoniae isolated during long-term macrolide therapy: Difference between erythromycin and clarithromycin.
J Infect Chemother, 11 (2005), pp. 112-114
[122.]
C.R. Hansen, T. Pressler, N. Hoiby, H.K. Johansen.
Long-term, low-dose azithromycin treatment reduces the incidence but increases macrolide resistance in Staphylococcus aureus in Danish CF patients.
J Cyst Fibros, 8 (2009), pp. 58-62
[123.]
R.M. Girón, J. Ancochea.
Macrolides: Not just antibiotics.
Arch Bronconeumol, 44 (2008), pp. 229-232
[124.]
H.O. Ballard, M.I. Anstead, L.A. Shook.
Azithromycin in the extremely low birth weight infant for the prevention of bronchopulmonary dysplasia: A pilot study.
Respir Res, 8 (2007), pp. 41
[125.]
A. Knyazhitskiy, R.G. Masson, R. Corkey, J. Joiner.
Beneficial response to macrolide antibiotic in patient with desquamative interstitial Pneumonia refractory to corticosteroid therapy.
Chest, 134 (2008), pp. 185-187
[126.]
A. Cervin, O. Kalm, P. Sandkull, S. Lindberg.
One-year low-dose erythromycin treatment of persistent chronic sinusitis after sinus surgery: Clinical outcome and effects on mucociliary parameters and nasal nitric oxide.
Otolaryngol Head Neck Surg, 126 (2002), pp. 481-489
[127.]
B. Wallwork, W. Coman, A. Mackay-Sim, L. Greiff, A. Cervin.
A double-blind, randomized, placebo-controlled trial of macrolide in the treatment of chronic rhinosinusitis.
Laryngoscope, 116 (2006), pp. 189-193
[128.]
B. Wallwork, W. Coman, A. Mackay-Sim, A. Cervin.
Effect of clarithromycin on nuclear factor ÎB and transforming growth factor-β in chronic rhinosinusitis.
[129.]
W.L. Baker, K. Couch.
Azithromycin for the secondary prevention of coronary artery disease: A meta-analysis.
Am J Health-Syst Pharm, 64 (2007), pp. 830-836
[130.]
O. Bakar, Z. Demirçay, M. Yuksel, G. Haklar, Y. Sanisoglu.
The effect of azithromycin on reactive oxygen species in rosacea.
Clin Exp Dermatol, 32 (2007), pp. 197-200
[131.]
O. Bakar, Z. Demirçay, O. Gürbüz.
Therapeutic potential of azithromycin in rosacea.
Int J Dermatol, 43 (2004), pp. 151-154
[132.]
M. Polat, N. Lenk, B. Yalcin, G. Gur, E. Tamer, F. Artuz, et al.
Efficacy of erythromycin for psoriasis vulgaris.
Clin Exp Dermatol, 32 (2007), pp. 295-297
[133.]
M. Komine, K. Tamaki.
An open trial of oral macrolide treatment for psoriasis vulgaris.
J Dermatol, 27 (2000), pp. 508-512
[134.]
S. Inoue, H. Nakase, M. Mansura, S. Ueno, N. Uza, H. Kitamura, et al.
Open label trial of clarithromycin therapy in Japanese patients with Crohn's disease.
J Gastroenterol Hepatol, 22 (2007), pp. 984-988
[135.]
K. Leiper, K. Martin, A. Ellis, A.J. Watson, A.I. Morris, J.M. Rhodes.
Clinical trial: Randomized study of clarithromycin versus placebo in active Crohn's disease.
Aliment Pharmacol Ther, 27 (2008), pp. 1233-1239
[136.]
K. Leiper, A.I. Morris, J.M. Rhodes.
Open label trial of oral clarithromycin in active Crohn's disease.
Aliment Pharmacol Ther, 14 (2000), pp. 801-806
[137.]
F. Shcilling, A.D. Wagner.
Azithromycin: An anti-inflammatory effect in chronic recurrent multifocal osteomyelitis? A preliminary report.
Z Reumatol, 59 (2000), pp. 352-353
[138.]
T.K. Kvien, S.H. Gaston, T. Bardin, I. Butrimiene, B.AC. Dijkmans, M. Leirisalo-Repo, et al.
Three month treatment of reactive arthritis with azithromycin: A EULAR double blind, placebo controlled study.
Ann Rheum Dis, 63 (2004), pp. 1113-1119
[139.]
U. Ertas, S. Tozoglu, O. Sahin, B. Seven, C. Gundogdu, B. Aktan, et al.
Evaluation of the anti-inflammatory effect of erythromycin on aseptic inflammation of temporomandibular joint in rabbit: A scintigraphic and histopathologic study.
Dent Traumatol, 21 (2005), pp. 213-217
[140.]
R.W. Moskowitz, M. Lesko, M. Hooper.
Open-label study of claritrhomycin in patients with undifferentiated connective tissue disease.
Semin Arthritis Rheum, 36 (2006), pp. 82-87
Copyright © 2010. Sociedad Española de Neumología y Cirugía Torácica
Archivos de Bronconeumología
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?