Journal Information
Vol. 44. Issue 3.
Pages 135-139 (January 2008)
Share
Share
Download PDF
More article options
Vol. 44. Issue 3.
Pages 135-139 (January 2008)
Original Articles
Full text access
Salbutamol Improves Diaphragm Force Generation in Experimental Sepsis
Visits
4623
Héctor Píriz
Corresponding author
hpiriz@hc.edu.uy

Correspondence: Dr H. Píriz. Facultad de Medicina, Hospital de Clínicas Avda. Italia, s/n, piso 15 11600 Montevideo, Uruguay
, Nicolás Nin, José Boggia, Martín Angulo, Francisco Javier Hurtado
Departamento de Fisiopatología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
This item has received
Article information
Objective

In a high percentage of cases, severe sepsis is accompanied by acute respiratory failure, in which weakness of the respiratory muscles plays an important role. Weakened respiratory muscles that are subjected to an increased mechanical load may develop muscle fatigue, with exacerbation of the respiratory failure. Because β2-adrenergic drugs increase muscle contraction force, they may play a role in preventing and managing respiratory failure in septic patients. Our aim was to study the effects of salbutamol on diaphragm function in an animal model of peritoneal sepsis.

Material and Methods

The study included 3 groups of animals: a) a control group (n=7), in which the animals underwent a median laparotomy without visceral manipulation; b) a septic group (n=10), in which peritoneal sepsis was induced by cecal ligation and puncture (CLP); and c) a salbutamol group (n=7), in which peritoneal sepsis (CLP) was treated with salbutamol. Hemodynamic parameters and blood gases were measured in vivo. Diaphragm function was evaluated in vitro.

Results

Salbutamol increased aortic blood flow and heart rate while it reduced mean arterial pressure in the animals with peritoneal sepsis (P<.05). Sepsis produced a significant drop in diaphragmatic force both before and after the application of a muscle-fatigue protocol. Treatment with salbutamol improved muscle contraction force before and after application of the protocol (P<.05).

Conclusions

The use of β2-adrenergic drugs such as salbutamol improves diaphragm function in experimental sepsis. The mechanisms that produce this improvement require further study.

Key words:
Respiratory muscles
Sepsis
Diaphragmatic dysfunction
β2-adrenergic drugs
Objetivo

La sepsis grave se acompaña en un alto porcentaje de casos de insuficiencia respiratoria aguda, donde la debilidad de los músculos respiratorios desempeña un papel importante. Los músculos respiratorios debilitados y sometidos a una carga mecánica aumentada pueden evolucionar a fatiga muscular con agravamiento de la insuficiencia respiratoria. Los fármacos adrenérgicos β2, al mejorar la fuerza de contracción muscular, podrían ser de utilidad en la prevención y el manejo de la insuficiencia respiratoria de pacientes con sepsis. El objetivo de este trabajo ha sido estudiar los efectos del salbutamol en la función diafragmática en un modelo animal de sepsis peritoneal.

Material y Métodos

Se estudiaron 3 grupos de animales: a) grupo control (n = 7), al que se realizó laparotomía mediana sin abordaje visceral;b) grupo sepsis (n = 10), al que se indujo sepsis peritoneal por ligadura y punción cecal (LPC), y c) grupo salbutamol (n = 7), en el que la sepsis peritoneal se trató con salbutamol (LPC + salbutamol). Los parámetros hemodinámicos y los gases sanguíneos se midieron in vivo. La función diafragmática se evaluó in vitro.

Resultados

El salbutamol aumentó el flujo aórtico y la frecuencia cardíaca a la vez que disminuyó la presión arterial media en la sepsis peritoneal (p < 0,05). La sepsis determinó una caída significativa de la fuerza diafragmática tanto antes como después de un protocolo de fatiga muscular. El tratamiento con salbutamol mejoró la fuerza de contracción muscular en ambos casos (p < 0,05).

Conclusiones

El uso de agentes adrenérgicos β2 como el salbutamol mejora la función diafragmática durante la sepsis experimental. Los mecanismos de esta mejoría deben estudiarse en mayor profundidad.

Palabras clave:
Músculos respiratorios
Sepsis
Disfunción diafragmática
Adrenérgicos β2
Full text is only aviable in PDF
References
[1]
DC Angus, WT Linde-Zwirble, J Lidicker, G Clermont, J Carcillo, MR Pinsky.
Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care.
Crit Care Med, 29 (2001), pp. 1303-1310
[2]
S Lanone, C Taille, J Boczkowski, M Aubier.
Diaphragmatic fatigue during sepsis and septic shock.
Intensive Care Med, 31 (2005), pp. 1611-1617
[3]
SN Hussain.
Respiratory muscle dysfunction in sepsis.
Mol Cell Biochem, 179 (1998), pp. 125-134
[4]
N Fujimura, S Sumita, E Narimatsu, Y Nakayama, Y Shitinohe, A Namiki.
Effects of isoproterenol on diaphragmatic contractility in septic peritonitis.
Am J Respir Crit Care Med, 161 (2000), pp. 440-446
[5]
L Martineau, MA Horan, NJ Rothwell, RA Little.
Salbutamol, a beta 2-adrenoceptor agonist, increases skeletal muscle strength in young men.
Clin Sci (Lond), 83 (1992), pp. 615-621
[6]
HFM van der Heijden, PN Dekhuijzen, H Folgering, CL van Herwaarden.
Inotropic effects of salbutamol on rat diaphragm contractility are potentiated by foreshortening.
Am J Respir Crit Care Med, 155 (1997), pp. 1072-1079
[7]
HF van der Heijden, WZ Zhan, YS Prakash, PN Dekhuijzen, GC Sieck.
Salbutamol enhances isotonic contractile properties of rat diaphragm muscle.
J Appl Physiol, 85 (1998), pp. 525-529
[8]
T Ito, N Fujimura, K Omote, A Namiki.
A selective beta2-adrenergic agonist, terbutaline, improves sepsis-induced diaphragmatic dysfunction in the rat.
Life Sci, 79 (2006), pp. 905-912
[9]
MP Fink, SO Heard.
Laboratory models of sepsis and septic shock.
J Surg Res, 49 (1990), pp. 186-196
[10]
K Collomp, R Candau, F Lasne, Z Labsy, C Prefaut, J de Ceaurriz.
Effects of short-term oral salbutamol administration on exercise endurance and metabolism.
J Appl Physiol, 89 (2000), pp. 430-436
[11]
S Lanone, A Mebazaa, C Heymes, D Henin, JJ Poderoso, Y Panis, et al.
Muscular contractile failure in septic patients: role of inducible nitric oxide synthase pathway.
Am J Respir Crit Care Med, 162 (2000), pp. 2308-2315
[12]
N Nin, A Cassina, J Boggia, E Alfonso, H Botti, G Peluffo, et al.
Septic diaphragmatic dysfunction is prevented by Mn(III)porphyrin therapy and inducible nitric oxide synthase inhibition.
Intensive Care Med, 30 (2004), pp. 2271-2278
[13]
LA Callahan, DA Stofan, L Szweda, DE Nethery, GS Supinski.
Free radicals alter maximal diaphragmatic mitochondrial oxygen consumption in endotoxin-induced sepsis.
Free Radic Biol Med, 30 (2001), pp. 129-138
[14]
E Barreiro, D Sánchez, JB Gáldiz, SNA Hussain, J Gea.
ENIGMA in COPD project N-acetylcysteine increases manganese superoxide dismutase activity in septic rat diaphragms.
Eur Respir J, 26 (2005), pp. 1032-1039
[15]
N Fujimura, S Sumita, M Aimono, Y Masuda, Y Shichinohe, E Narimatsu, et al.
Effect of free radical scavengers on diaphragmatic contractility in septic peritonitis.
Am J Respir Crit Care Med, 162 (2000), pp. 2159-2165
[16]
E Barreiro, SN Hussain.
Respiratory muscle failure in sepsis.
Arch Bronconeumol, 38 (2002), pp. 226-235
[17]
L Voisin, D Breuille, L Combaret, C Pouyet, D Taillandier, E Aurousseau, et al.
Muscle wasting in a rat model of long-lasting sepsis results from the activation of lysosomal, Ca2+-activated, and ubiquitin-proteasome proteolytic pathways.
J Clin Invest, 97 (1996), pp. 1610-1617
[18]
PJ Reeds, SM Hay, PM Dorwood, RM Palmer.
Stimulation of muscle growth by clenbuterol: lack of effect on muscle protein biosynthesis.
Br J Nutr, 56 (1986), pp. 249-258
[19]
HFM van der Heijden, PN Dekhuijzen, H Folgering, LA Ginsel, CL Van Herwaarden.
Long-term effects of clenbuterol on diaphragm morphology and contractile properties in emphysematous hamsters.
J Appl Physiol, 85 (1998), pp. 215-222
[20]
WN Smith, A Dirks, T Sugiura, S Muller, P Scarpace, SK Powers.
Alteration of contractile force and mass in the senescent diaphragm with beta(2)-agonist treatment.
J Appl Physiol, 92 (2002), pp. 941-948
[21]
TX Jiang, A Cairns, JD Road, PG Wilcox.
Effect of the beta-agonist clenbuterol on dexamethasone-induced diaphragm dysfunction.
Am J Respir Crit Care Med, 154 (1996), pp. 1778-1783
[22]
G Supinski, D Nethery, D Stofan, A DiMarco.
Effect of free radical scavengers on diaphragmatic fatigue.
Am J Respir Crit Care Med, 155 (1997), pp. 622-629
[23]
A Gillissen, M Jaworska, B Scharling, D van Zwoll, G Schultze-Werninghaus.
Beta-2-agonists have antioxidant function in vitro. 1. Inhibition of superoxide anion, hydrogen peroxide, hypochlorous acid and hydroxyl radical.
Respiration, 64 (1997), pp. 16-22
[24]
A Gillissen, D Wickenburg, D van Zwoll, G Schultze-Werninghaus.
Beta-2-agonists have antioxidant function in vitro. 2. The effect of beta-2-agonists on oxidant-mediated cytotoxicity and on superoxide anion generated by human polymorphonuclear leukocytes.
Respiration, 64 (1997), pp. 23-28
[25]
K Zwicker, W Damerau, S Dikalov, H Scholtyssek, I Schimke, G Zimmer.
Superoxide radical scavenging by phenolic bronchodilators under aprotic and aqueous conditions.
Biochem Pharmacol, 56 (1998), pp. 301-305
[26]
ZN Mirza, M Kato, H Kimura, A Tachibana, T Fujiu, M Suzuki, et al.
Fenoterol inhibits superoxide anion generation by human polymorphonuclear leukocytes via beta-adrenoceptor-dependent and -independent mechanisms.
Ann Allergy Asthma Immunol, 88 (2002), pp. 494-500
[27]
S Cuzzocrea, DP Riley, AP Caputi, D Salvemini.
Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury.
Phamacol Rev, 53 (2001), pp. 135-159
[28]
T Yimlamai, SL Dodd, SE Borst, S Park.
Clenbuterol induces musclespecific attenuation of atrophy through effects on the ubiquitin-proteasome pathway.
J Appl Physiol, 99 (2005), pp. 71-80
[29]
A Nakamura, EJ Johns, A Imaizumi, Y Yanagawa, T Kohsaka.
[.beta]2-adrenoceptor agonist suppresses renal tumour necrosis factor and enhances interleukin-6 gene expression induced by endotoxin.
Nephrol Dial Transplant, 15 (2000), pp. 1928-1934
[30]
K Mizuno, HK Takahashi, H Iwagaki, G Katsuno, HA Kamurul, S Ohtani, et al.
ß2-adrenergic receptor stimulation inhibits LPS-induced IL-18 and IL-12 production in monocytes.
Immunol Lett, 101 (2005), pp. 168-172
Copyright © 2008. Sociedad Española de Neumología y Cirugía Torácica (SEPAR)
Archivos de Bronconeumología
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?