Journal Information
Vol. 46. Issue S10.
Nuevos enfoques en el tratamiento de la EPOC
Pages 19-24 (December 2010)
Share
Share
Download PDF
More article options
Vol. 46. Issue S10.
Nuevos enfoques en el tratamiento de la EPOC
Pages 19-24 (December 2010)
Full text access
Perfil farmacológico del roflumilast
Pharmacological profile of roflumilast
Visits
14983
Julio Cortijo Gimeno
Corresponding author
Cortijo_Jul@Gva.Es

Autor para correspondencia.
, Esteban Morcillo Sánchez
Unidad de Docencia e Investigación. Consorcio Hospital General Universitario de Valencia. España
Departamento de Farmacología. Facultad de Medicina y Odontología. Universidad de Valencia. España
This item has received
Article information
Abstract
Bibliography
Download PDF
Statistics
Resumen

El roflumilast (3-ciclopropilmetoxi-4-difluorometoxi-N-[3,5-di-cloro-4-piridil]-benzamida) ha sido el primer agente de una nueva clase farmacológica, los inhibidores selectivos de la fosfodiesterasa-4 (IPDE4), aprobado para el tratamiento de los pacientes con enfermedad pulmonar obstructiva crónica (EPOC). El mecanismo molecular de acción del roflumilast es la inhibición de la isoenzima de la PDE4 y el consecuente incremento del monofosfato de adenosina cíclico. Es evidente que el roflumilast muestra varios efectos farmacológicos: antiinflamatorio, antienfisematoso, antifibrótico, inhibidor de la hipertensión pulmonar y mucorregulador. Las acciones farmacológicas responsables de sus efectos son: a) la inhibición de la formación de especies reactivas de oxígeno en las células del epitelio, los neutrófilos y las células del músculo liso; b) la inhibición de la proliferación de las células del músculo liso de la arteria pulmonar, las células endoteliales y, probablemente, algunas células inflamatorias responsables del remodelado vascular pulmonar; c) la inhibición de los fibroblastos, con la consiguiente disminución del remodelado pulmonar, y, finalmente, d) la inhibición de la producción de moco y la mejora del batido ciliar.

En suma, el roflumilast es el primer antiinflamatorio no esteroideo que podrá utilizarse en el tratamiento de la EPOC.

Palabras clave:
Inhibidor de la isoenzima fosfodiesterasa-4
(IPDE4)
Enfermedad pulmonar obstructiva crónica
(EPOC)
Antiinflamatorio
Antienfisematoso
Antirremodelado
Mucorregulación
Roflumilast
Abstract

Roflumilast (3-cyclopropylmethoxy-4-difluoromethoxy-n-(3,5-dichloropyrid-4-yl)benzamide) was the first agent of a novel pharmacological class, selective phosphodiesterase 4 (PDE4) inhibitors, approved for the use of chronic obstructive pulmonary disease (COPD). The molecular mechanism of action of roflumilast is inhibition of the PDE4 isoenzyme with a consequent increase of cyclic adenosine monophosphate. Roflumilast evidently has several pharmacological effects: antiinflammatory, anti-emphysema, and antibiotic actions. This drug also inhibits pulmonary hypertension and reduces mucus hypersecretion. The pharmacological actions leading to these effects are: a) inhibition of reactive oxygen species formation in epithelial cells, neutrophils and smooth muscle cells; b) inhibition of smooth muscle cell proliferation in the pulmonary artery, endothelial cells and probably some inflammatory cells causing pulmonary vascular remodeling; c) inhibition of fibroblasts, with a consequent reduction in pulmonary remodeling and, finally, d) inhibition of mucus production and improved ciliary beat frequency. In summary, roflumilast is the first non-steroidal anti-inflammatory drug that can be used in the treatment of COPD.

Keywords:
Phosphodiesterase 4 (PDE4) inhibitor
Chronic obstructive pulmonary disease
(COPD)
Antiinflammatory
Anti-emphysema drug
Anti-remodeling agents
Mucus regulation
Roflumilast
Full text is only aviable in PDF
Bibliografía
[1.]
Amschler H. Fluoroalkoxy-substituted benzamides and their use as cyclic nucleotide phosphodiesterase inhibitors. PCT Patent WO95/01338; 1995.
[2.]
A. Hatzelmann, C. Schudt.
Anti-inflammatory and immunomodulatory potential of the novel PDE4 inhibitor roflumilast in vitro.
J Pharmacol Exp Ther, 297 (2001), pp. 267-279
[3.]
D. Claveau, S.L. Chen, S. O’Keefe, D.M. Zaller, A. Styhler, S. Liu.
Preferential inhibition of T helper1, but not T helper2, cytokines in vitro by L-826,141[4-[2-(3,4-Bisdiflurome thoxyphenyl)-2-[4-(1,1,1,3,3,3-hexafluoro-2-hydroxypropan-2-yl)-phenyl]-ethyl]3- methylpyridine-1-oxide], a potent and selective phosphodiesterase 4 inhibitor.
J Pharmacol Exp Ther, 310 (2004), pp. 752-760
[4.]
T.D. Bethke, G.M. Bohmer, R. Hermann, B. Hauns, R. Fux, K. Morike, et al.
Dose-proportional intraindividual single- and repeated-dose pharmacokinetics of roflumilast, an oral, once-daily phosphodiesterase 4 inhibitor.
J Clin Pharmacol, 47 (2007), pp. 26-36
[5.]
A. Hatzelmann, E.J. Morcillo, G. Lungarella, S. Adnot, S. Sanjar, R. Beume, et al.
The preclinical pharmacology of roflumilast: A selective, oral phosphodiesterase 4 inhibitor in development for chronic obstructive pulmonary disease.
Pulm Pharmacol Ther, 23 (2010), pp. 235-256
[6.]
A. Churg, M. Cosio, J.L. Wright.
Mechanisms of cigarette smoke-induced COPD: Insights from animal models.
Am J Physiol Lung Cell Mol Physiol, 294 (2008), pp. L6 12-31
[7.]
J.C. Fox, M.F. Fitzgerald.
The role of animal models in the pharmacological evaluation of emerging anti-inflammatory agents for the treatment of COPD.
Curr Opin Pharmacol, 9 (2009), pp. 231-242
[8.]
P.A. Martorana, B. Lunghi, M. Lucattelli, C.G. De, R. Beume, G. Lungarella.
Effect of roflumilast on inflammatory cells in the lungs of cigarette smoke-exposed mice.
BMC Pulm Med, 8 (2008), pp. 17
[9.]
S.A. Shore, S.D. Shapiro.
Asthma and COPD: animal models. Asthma and COPD, basic mechanisms and clinical management.
AcademicPress, (2008),
[10.]
J.L. Wright, M. Cosio, A. Churg.
Animal models of chronic obstructive pulmonary disease.
Am J Physiol Lung Cell Mol Physiol, 295 (2008), pp. L1-L15
[11.]
M.F. Fitzgerald, D. Spicer, A.E. McAulay, L. Wollin, R. Beume.
Roflumilast but not methylprednisolone inhibited cigarette smoke-induced pulmonary inflammation in Guinea pigs.
Eur Respir J Suppl, (2006), pp. P3850
[12.]
P.A. Martorana, R. Beume, M. Lucattelli, L. Wollin, G. Lungarella.
Roflumilast fully prevents emphysema in mice chronically exposed to cigarette smoke.
Am J Respir Crit Care Med, 172 (2005), pp. 848-853
[13.]
A. Weidenbach, C. Braun, F. Schwoebel, R. Beume, D. Marx.
Therapeutic effects of various PDE4 inhibitors on cigarette smoke-induced pulmonary neutrophilia in mice.
Am J Respir Crit Care Med, 178 (2008), pp. A651
[14.]
Q.C. Le, I. Guenon, J.Y. Gillon, S. Valenca, V. Cayron-Elizondo, V. Lagente, et al.
The selective MMP-12 inhibitor, AS111793 reduces airway inflammation in mice exposed to cigarette smoke.
Br J Pharmacol, 154 (2008), pp. 1206-1215
[15.]
E.L. Hardaker, M.S. Freeman, N. Dale, F. Raza, J. Mok, K.H. Banner, et al.
Characterisation of a model that mimicks aspects of the hyper-inflammatory response observed during an acute exacerbation of COPD.
Am J Respir Crit Care Med, 179 (2009), pp. A5351
[16.]
J. Cortijo, A. Iranzo, X. Milara, M. Mata, M. Cerdá-Nicolás, A. Ruiz-Saurí, et al.
Roflumilast, a phosphodiesterase 4 inhibitor, alleviates bleomycin-induced lung injury.
Br J Pharmacol, 156 (2009), pp. 534-544
[17.]
M.J. Sanz, J. Cortijo, M.A. Taha, M. Cerdá-Nicolás, E. Schatton, B. Burgbacher, et al.
Roflumilast inhibits leukocyte-endothelial cell interactions, expression of adhesion molecules and microvascular permeability.
Br J Pharmacol, 152 (2007), pp. 481-492
[18.]
H. Tenor, B. Burgbacher, C. Schudt, A. Hatzelmann.
Effects of roflumilast and other PDE4 inibitors on human CD8 p T-cell functions.
Eur Respir J Suppl, 26 (2005), pp. S717
[19.]
J. Milara, J. Cortijo, M. Mata, E. Donet, M. Mauricio, E.J. Morcillo.
The PDE4 inhibitor roflumilast N-oxide partly reversed TGFß1-induced changes in collagen I and E-cadherin expression in human airway epithelial cells.
Eur Respir J Suppl, (2008), pp. P3648
[20.]
F. Sabatini, L. Petecchia, S. Boero, M. Silvestri, J. Klar, H. Tenor, et al.
A phosphodiesterase 4 inhibitor, roflumilast N-oxide, inhibits human lung fibroblast functions in vitro.
Pulm Pharmacol Ther, 23 (2010), pp. 283-291
[21.]
J.K. Burgess, B.G. Oliver, M.H. Poniris, Q. Ge, S. Boustany, N. Cox, et al.
A phosphodiesterase 4 inhibitor inhibits matrix protein deposition in airways in vitro.
J Allergy Clin Immunol, 118 (2006), pp. 649-657
[22.]
J.C. Fox, D. Spicer, R. Henning, B. Meshi, M.T. Shrad, J.C. Hogg.
Efficacy of the PDE4 inhibitor, BAY 19-8004, in tobacco smoke models of COPD in the Guinea pig.
Am J Respir Crit Care Med, 167 (2003), pp. A91
[23.]
N.A. Jones, V. Boswell-Smith, R. Lever, C.P. Page.
The effect of selective phosphodiesterase isoenzyme inhibition on neutrophil function in vitro.
Pulm Pharmacol Ther, 18 (2005), pp. 93-101
[24.]
S. Muzaffar, N. Shukla, G.D. Angelini, J.Y. Jeremy.
Roflumilast N-oxide inhibits NADPH oxidase expression and activity in human pulmonary artery smooth muscle cells.
Proc Br Pharmacol Soc, 6 (2008), pp. 027P
[25.]
S. Namkoong, C.K. Kim, Y.L. Cho, J.H. Kim, H. Lee, K.S. Ha, et al.
Forskolin increases angiogenesis through the coordinated cross-talk of PKA-dependent VEGF expression and Epac-mediated PI3K/Akt/eNOS signaling.
Cell Signal, 21 (2009), pp. 906-915
[26.]
J. Araya, S. Cambier, J.A. Markovics, P. Wolters, D. Jablons, A. Hill.
Squamous metaplasia amplifies pathologic epitheliale mesenchymal interactionsin COPD patients.
J Clin Invest, 117 (2007), pp. 3551-3562
[27.]
G. Borzone, R. Moreno, R. Urrea, M. Meneses, M. Oyarzun, C. Lisboa.
Bleomycin-induced chronic lung damage does not resemble human idiopathic pulmonary fibrosis.
Am J Respir Crit Care Med, 163 (2001), pp. 1648-1653
[28.]
N.I. Chaudhary, A. Schnapp, J.E. Park.
Pharmacologic differentiation of inflammation and fibrosis in the rat bleomycin model.
Am J Respir Crit Care Med, 173 (2006), pp. 769-776
[29.]
T. Kohyama, X. Liu, F.Q. Wen, Y.K. Zhu, H. Wang, H.J. Kim.
PDE4 inhibitors attenuate fibroblast chemotaxis and contraction of native collagen gels.
Am J Respir Cell Mol Biol, 26 (2002), pp. 694-701
[30.]
T. Kohyama, X. Liu, F.Q. Wen, T. Kobayashi, Q. Fang, S. Abe.
Cytokines modulate cilomilast response in lung fibroblasts.
Clin Immunol, 111 (2004), pp. 297-302
[31.]
A. Chaouat, R. Naeije, E. Weitzenblum.
Pulmonary hypertension in COPD.
Eur Respir J, 32 (2008), pp. 1371-1385
[32.]
M. Izikki, B. Raffestin, J. Klar, A. Hatzelmann, D. Marx, H. Tenor, et al.
Effects of roflumilast, a phosphodiesterase-4 inhibitor, on hypoxia- and monocrotaline-induced pulmonary hypertension in rats.
J Pharmacol Exp Ther, 330 (2009), pp. 54-62
[33.]
C. Schudt, S. Winder, S. Forderkunz, A. Hatzelmann, V. Ullrich.
Influence of selective phosphodiesterase inhibitors on human neutrophil functions and levels of cAMP and Cai.
Naunyn Schmiedebergs Arch Pharmacol, 344 (1991), pp. 682-690
[34.]
J.C. Hogg, F. Chu, S. Utokaparch, R. Woods, W.M. Elliott, L. Buzatu, et al.
The nature of small-airway obstruction in chronic obstructive pulmonary disease.
N Engl J Med, 350 (2004), pp. 2645-2653
[35.]
A.G. Agusti.
COPD, a multicomponent disease: Implications for management.
Respir Med, 99 (2005), pp. 670-682
[36.]
A. Wohlsen, L. Wollin, D. Marx, R. Beume.
Effect of roflumilast and other cAMP elevating agents on airway beat ciliary frequency in proximal and distal airways in rat precision cut lung slices.
Fifth International Multidisciplinary Conference on Chronic Obstructive Pulmonary Disease (COPD5),
[37.]
J. Milara, J. Cortijo, M. Armengot, P. Banuls, E. Gabarda, E. Morcillo.
Effect of roflumilast, a PDE4 inhibitor on ciliary beat frequency in human nasal epithelial cells.
Eur Respir J Suppl, (2008), pp. P3651
[38.]
N. Pedemonte, L. Galietta.
Stimulation of CFTR-dependent chloride secretion by roflumilast.
Eur Respir J Suppl, (2008), pp. P3672
[39.]
M. Mata, B. Sarria, A. Buenestado, J. Cortijo, M. Cerdá, E.J. Morcillo.
Phosphodiesterase 4 inhibition decreases MUC5AC expression induced by epidermal growth factor in human airway epithelial cells.
Thorax, 60 (2005), pp. 144-152
[40.]
A. Weidenbach, C. Braun, F. Schwoebel, R. Beume, D. Marx.
Steroid insensitivity in a shortterm model of cigarette smoke induced pulmonary inflammation in mice.
Am J Respir Crit Care Med, 177 (2008), pp. A651
[41.]
L. Graat-Verboom, E.F. Wouters, F.W. Smeenk, B.E. Van den Borne, R. Lunde, M.A. Spruit.
Current status of research on osteoporosis in COPD: A systematic review.
Eur Respir J, 34 (2009), pp. 209-218
[42.]
W. Yao, X.Y. Tian, J. Chen, R.B. Setterberg, M.W. Lundy, P. Chmielzwski, et al.
Rolipram, a phosphodiesterase 4 inhibitor, prevented cancellous and cortical bone loss by inhibiting endosteal bone resorption and maintaining the elevated periosteal bone formation in adult ovariectomized rats.
J Musculoskelet Neuronal Interact, 7 (2007), pp. 119-130
[43.]
J. Chang, Z. Wang, E. Tang, Z. Fan, L. McCauley, R. Franceschi, et al.
Inhibition of osteoblastic bone formation by nuclear factor-kappaB.
Nat Med, 15 (2009), pp. 682-689
[44.]
R.T. Hinkle, E. Dolan, D.B. Cody, M.B. Bauer, R.J. Isfort.
Phosphodiesterase 4 inhibition reduces skeletal muscle atrophy.
Muscle Nerve, 32 (2005), pp. 775-781
[45.]
J.M. O’Donnell, H.T. Zhang.
Antidepressant effects of inhibitors of cAMP phosphodiesterase (PDE4).
Trends Pharmacol Sci, 25 (2004), pp. 158-163
[46.]
C.E. Bolton, M. Evans, A.A. Ionescu, S.M. Edwards, R.H. Morris, G. Dunseath, et al.
Insulin resistance and inflammation: A further systemic complication of COPD.
[47.]
A. Tiengo, G.P. Fadini, A. Avogaro.
The metabolic syndrome, diabetes and lung dysfunction.
Diabetes Metab, 34 (2008), pp. 447-454
[48.]
D. Waddleton, W. Wu, Y. Feng, C. Thompson, M. Wu, Y.P. Zhou, et al.
Phosphodiesterase 3 and 4 comprise the major cAMP metabolizing enzymes responsible for insulin secretion in INS-1 (832/13) cells and rat islets.
Biochem Pharmacol, 76 (2008), pp. 884-893
[49.]
W.K. Ong, F.M. Gribble, F. Reimann, M.J. Lynch, M.D. Houslay, G.S. Baillie, et al.
The role of the PDE4D cAMP phosphodiesterase in the regulation of glucagon- like peptide- 1 release.
Br J Pharmacol, 157 (2009), pp. 633-644
[50.]
R. Zhang, E. Maratos-Flier, J.S. Flier.
Reduced adiposity and high-fat diet-induced adipose inflammation in mice deficient for phosphodiesterase 4B.
Endocrinology, 150 (2009), pp. 3076-3082
[51.]
Evers S, Fingerle J, Himber J, Gretarsdottir S, Gulcher J. The use of PDE4D in the screening for medicaments against atherosclerosis. PCT Patent WO2004/ 090157; 2004.
[52.]
V.M. Keatings, A. Jatakanon, Y.M. Worsdell, P.J. Barnes.
Effects of inhaled and oral glucocorticoids on inflammatory indices in asthma and COPD.
Am J Respir Crit Care Med, 155 (1997), pp. 542-548
[54.]
J.A. Marwick, P.A. Kirkham, C.S. Stevenson, H. Danahay, J. Giddings, K. Butler.
Cigarette smoke alters chromatine modelin gand induces proinflammatory genes inratlungs.
Am J Respir Cell Mol Biol, 31 (2004), pp. 633-642
[55.]
J.A. Marwick, G. Caramori, C.S. Stevenson, P. Casolari, E. Jazrawi, P.J. Barnes.
Inhibition of PI3Kdelta restores glucocorticoid functionin smoking- induced airway inflammation in mice.
Am J Respir Crit Care Med, 179 (2009), pp. 542-548
Copyright © 2010. Sociedad Española de Neumología y Cirugía Torácica
Archivos de Bronconeumología
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?