Journal Information
Vol. 40. Issue 5.
Pages 222-230 (May 2004)
Vol. 40. Issue 5.
Pages 222-230 (May 2004)
Review
Full text access
Nasal Nitric Oxide
Visits
7029
C. Serrano, A. Valero, C. Picado
Corresponding author
cpicado@clinic.ub.es
Correspondence: Dr. C. Picado. Unidad de Alergia, Servicio de Neumología y Alergia Respiratoria, Hospital Clínic. Villarroel 170. 08036 Barcelona. España
Correspondence: Dr. C. Picado. Unidad de Alergia, Servicio de Neumología y Alergia Respiratoria, Hospital Clínic. Villarroel 170. 08036 Barcelona. España
Unidad de Alergia, Servicio de Neumología y Alergia Respiratoria, Hospital Clínic, Barcelona, Spain
This item has received
Article information
Full text is only aviable in PDF
REFERENCES
[1]
G Djupesland Per, JM Chatkin, W Qian, JSJ Haight.
Nitric oxide in the nasal airway: a new dimension in otorhinolaryngology.
Am J Otolaryngol, 22 (2001), pp. 19-32
[2]
FLM Ricciardolo.
Multiple roles of nitric oxide in the airways.
Thorax, 58 (2003), pp. 175-182
[3]
JON Lundberg, J Rinder, E Weitzberg, JM Lundberg, K Alving.
Nasally exhaled nitric oxide in humans originates mainly in the paranasal sinuses.
Acta Physiol Scand, 152 (1994), pp. 431-432
[4]
K Lewandowiski, T Busch, H Lohbrunner, S Rensing, U Keske, H Gerlach, et al.
Low nitric oxide concentrations in exhaled gas and nasal airways of mammals without paranasal sinuses.
J Appl Physiol, 85 (1998), pp. 405-410
[5]
MK Al-Ali, PH Howarth.
Nitric oxide and the respiratory system in health and disease.
Respir Med, 92 (1998), pp. 701-715
[6]
JA Andersson, A Cervin, S Lindberg, R Uddman, LO Cardell.
The paranasal sinuses as reservoirs for nitric oxide.
Acta Otolaringol, 122 (2002), pp. 861-865
[7]
M Pasto, E Serrano, E Urocoste, MA Barbacanne, A Guissani, A Didier, et al.
Nasal polyp-derived superoxide anion: dose-dependent inhibition by nitric oxide and pathophysiological implications.
Am J Respir Crit Care Med, 163 (2001), pp. 145-151
[8]
M Deja, T Busch, S Bachmann, K Riskowski, V Campean, B Wiedmann, et al.
Reduced nitric oxide in sinus epithelium of patients with radiologic maxillary sinusitis and sepsis.
Am J Respir Crit Care Med, 168 (2003), pp. 281-286
[9]
E Baraldi, NM Azzolin, P Biban, F Zacchello.
Effect of antibiotic therapy on nasal nitric oxide concentration in children with acute sinusitis.
Am J Respir Crit Care Med, 155 (1997), pp. 1680-1683
[10]
EA Ferguson, R Eccles.
Changes in nasal nitric oxide concentration associated with symptoms of common cold and treatment with a topical nasal decongestant.
Acta Otolaryngol, 117 (1997), pp. 614-617
[11]
DA Gentile, WJ Doyle, S Belenky, H Ranch, B Angelini, DP Skoner.
Nasal and oral nitric oxide levels during experimental respiratory syncytial virus infection of adults.
Acta Otolaryngol, 122 (2002), pp. 61-66
[12]
S Kharitonov, K Rajaulasingam, B O'Connor, SR Durham, PJ Barnes.
Nasal nitric oxide is increased in patients with asthma and allergic rhinitis and may be modulated by nasal corticosteroids.
J Allergy Clin Immunol, 99 (1997), pp. 58-64
[13]
JF Arnal, A Didier, J Rami, C Rini, JP Charlet, E Serrano, et al.
Nasal nitric oxide is increased in allergic rhinitis.
Clin Exp Allergy, 27 (1996), pp. 358-362
[14]
PG Djupesland, JM Chatkin, W Qian, JS Haight.
Aerodynamic influences on nasal nitric oxide output measurements.
Acta Otolaryngol, 119 (1999), pp. 479-485
[15]
H Kawamoto, S Takeno, M Takumida, H Watanabe, K Yajin.
Increased expression of inducible nitric oxide synthase in nasal epithelial cells in patients with allergic rhinitis.
Laryngoscope, 109 (1999), pp. 2015-2020
[16]
PE Silkoff, Y Roth, P McClean, P Cole, J Chapnik, N Zamel.
Nasal nitric oxide does not control basal nasal patency or acute congestion following allergen challenge in allergic rhinitis.
Ann Otol Rhinol Laryngol, 108 (1999), pp. 368-372
[17]
JO Lundberg, E Weitzberg, J Rinder, A Rudehill, O Jansson, NP Wiklund, et al.
Calcium-independent and steroid resistant nitric oxide synthase activity in human paranasal sinus mucosa.
Eur Respir J, 9 (1996), pp. 1344-1347
[18]
JP Palm, K Alving, JO Lundberg.
Characterization of airway nitric oxide in allergic rhinitis: the effect of intranasal administration of L-NAME.
Allergy, 58 (2003), pp. 885-892
[19]
AS Slutski, JM Drazen.
Recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide in adults and children 1999.
Am J Respir Crit Care Med, 160 (1999), pp. 2104-2117
[20]
EA Ferguson, R Eccles.
Relationship between nasal nitric oxide concentration and nasal airway resistance.
Rhinology, 35 (1997), pp. 120-123
[21]
M Maniscalco, M Sofía, L Carratú, T Higenbottam.
Effect of nitric oxide inhibition on nasal airway resistance after nasal allergen challenge in allergic rhinitis.
Eur J Clin Invest, 31 (2001), pp. 462-466
[22]
C Vural, A Gungor.
Variations of nasal nitric oxide in a subject with allergic rhinitis: a longitudinal study.
Am J Otolaryngol, 23 (2002), pp. 191-195
[23]
I Ramis, J Lorente, J Roselló-Catafau, P Quesada, E Gelpi, O Bulbena.
Differential activity of nitric oxide synthase in human nasal mucosa and polyps.
Eur Respir J, 9 (1996), pp. 202-206
[24]
S Jiang, Z Dong, Z Yang.
Expression of the inducible isoform of nitric oxide synthase mRNA and the role in nasal polyps.
Zhonghua Er Bi Yan Hou Ke Za Zhi, 36 (2001), pp. 298-300
[25]
A Parikh, GK Scadding, P Gray, MG Belvisi, JA Mitchell.
High levels of nitric oxide synthase activity are associated with nasal polyp tissue from aspirin sensitive asthmatics.
Acta Otolaryngol, 122 (2002), pp. 302-305
[26]
D Colantonio, L Brouillette, A Parikh, GK Scadding.
Parodoxical low nasal nitric oxide in nasal polyposis.
Clin Exp Allergy, 32 (2002), pp. 698-701
[27]
JF Arnal, P Flores, J Rami, M Murris-Espin, F Bremont, I Pasto, et al.
Nasal nitric oxide concentration in paranasal sinus inflammatory diseases.
Eur Respir J, 13 (1999), pp. 307-312
[28]
H Hebestreit, B Dibbert, I Balatti, D Braun, A Schapowal, K Blaser, et al.
Disruption of fas receptor signaling by nitric oxide in eosinophils.
J Exp Med, 187 (1998), pp. 415-425
[29]
HU Simon, S Yousefi, C Schranz, A Schapowal, C Bachert, K Blaser.
Direct demonstration of delayed eosinophil apoptosis as a mechanism causing tissue eosinophilia.
J Immunol, 187 (1997), pp. 415-425
[30]
R Djukanovic, C Lai, J Wilson, K Britten, S Wilson, W Roche, et al.
Bronchial mucosa manifestation of atopy: a comparison of markers of inflammation between atopic asthmatics, atopic non asthmatics and healthy controls.
Eur Respir J, 5 (1992), pp. 538-544
[31]
GJ Braunstahl, WJ Fokkens, SE Overbeek, A Klein Jan, HC Hoogsteden, JB Prins.
Mucosal and systemic inflammatory changes in allergic rhinitis and asthma: a comparison between upper and lower airways.
Clin Exp Allergy, 33 (2003), pp. 579-587
[32]
G-J Braunstahl, S Overbeek, A Klein Jan, JB Prins, HC Hoogsteden, WJ Fokkens.
Nasal allergen provocation induces adhesion molecules expression and tissue eosinophilia in upper and lower airways.
J Allergy Clin Immunol, 107 (2001), pp. 469-476
[33]
G-J Braunstahl, S Overbeek, A Klein Jan, JB Prins, HC Hoogsteden, WJ Fokkens.
Segmental bronchial provocation induces nasal inflammation in allergic rhinitis patients.
Am J Respir Crit Care Med, 161 (2000), pp. 2051-2057
[34]
AM Kirsten, RA Jorres, D Kirsten, H Magnussen.
Comparison of nasal and bronchial production of nitric oxide in healthy probands and patients with asthma.
Pneumologie, 51 (1997), pp. 359-364
[35]
T Wodehouse, SA Kharitonov, IS Mackay, PJ Barnes, R Wilson, PJ Cole.
Nasal nitric oxide measurements for the screening of primary ciliary dyskinesia.
Eur Respir J, 21 (2003), pp. 43-47
[36]
H Grasemann, SS Gärtig, HG Wiesemann, H Teschler, N Konietzko, F Ratjen.
Effect of L-arginine infusion on airway NO in cystic fibrosis and primary ciliary dyskinesia.
Eur Respir J, 13 (1999), pp. 114-118
[37]
S Thomas, S Kharitonov, S Scott, M Hodson, PJ Barnes.
Nasal and exhaled nitric oxide is reduced in adult patients with cystic fibrosis and does not correlate with cystic fibrosis genotype.
Chest, 117 (2000), pp. 1085-1089
[38]
I Hovarth, S Loukides, T Wodehouse, E Csiszer, PJ Cole, S Kharitonov, et al.
Comparison of exhaled and nasal nitric oxide and exhaled carbon monoxide levels in bronchiectatic patients with and without primary ciliary dyskinesia.
Thorax, 58 (2003), pp. 68-72
[39]
JO Lunberg.
Nitric oxide in the nasal airways.
Eur Respir Rev, 68 (1999), pp. 241-245
[40]
PE Silkoff, PA McClean, AS Slutski, HG Furlott, S Hoffstein, S Wakita, et al.
Marked flow-dependence of exhaled nitric oxide using a new technique to exclude nasal nitric oxide.
Am J Respir Crit Care Med, 155 (1997), pp. 260-267
[41]
PG Djupesland, JM Chatkin, W Qian, P McClean, P Cole, N Zamel, et al.
Aerodynamic influences on nasal nitric oxide output measurement.
Acta Otolaryngol, 119 (1999), pp. 479-485
[42]
W Qian, PJ Djupesland, JM Chatkin, P McClean, H Furlott, JS Chapnik, et al.
Aspiration flow optimized for nasal nitric oxide measurement.
Rhinology, 37 (1998), pp. 61-65
[43]
JM Chatkin, PG Djupesland, W Qian, P McClean, H Furlott, C Gutiérrez, et al.
Nasal nitric oxide is independent of nasal cavity volume.
Am J Rhinol, 159 (1999), pp. 179-184
[44]
W Qian, R Sabo, M Ohm, J Haight, R Fenton.
Nasal nitric oxide and nasal cycle.
Laryngoscope, 111 (2001), pp. 1603-1607
[45]
DC Chambers, D Carpenter, JG Ayres.
Exchange dynamics of nitric oxide in the human nose.
J Appl Physiol, 91 (2001), pp. 1924-1930
[46]
JON Lundberg, T Farkas-Szallasi, E Weitzberg, J Rinder, J Lidholm, A Anggaard, et al.
High nitric oxide in human paranasal sinuses.
Nat Med, 1 (1995), pp. 370-373
[48]
PE Silkoff, RA Robbins, B Gaston, JO Lundberg, RG Townley.
Endogenous nitric oxide in allergic airway disease.
J Allergy Clin Immunol, 105 (2000), pp. 438-448
[49]
CR Philips, GD Giraud, WE Holden.
Exhaled nitric oxide during exercise: site of release and modulation by ventilation and blood flow.
J Appl Phisiol, 80 (1996), pp. 1865-1871
[50]
M Imada, J Iwamoto, S Nonaka, Y Kobayashi, T Unno.
Measurement of nitric oxide in human nasal airway.
Eur Respir J, 9 (1996), pp. 169-179
[51]
JO Lundberg, J Rinder, F Weitzberg, K Alving, JM Lunberg.
Heavy physical exercise decreases nitric oxide levels in the nasal airways in humans.
Acta Physiol Scand, 159 (1997), pp. 51-57
[52]
J Rinder, JO Lundberg, A änggärd, K Alving, JM Lunberg.
Effects of topical nasal decongestants, L-arginine and nitric oxide synthase inhibition on nasal cavity nitric oxide levels and nasal cavity volume in man.
Am J Rhinol, 10 (1996), pp. 399-408
[53]
GJ Westerveld, HP Voss, RM van der Hee, GJ de Haan-Koelewijn, GJ den Hartog, RA Scheeren, et al.
Inhibition of nitric oxide synthase by nasal decongestants.
Eur Respir J, 16 (2000), pp. 437-444
[54]
W Qian, A Graciano, JS Haight, P McClean, N Zamel, JS Chapnik.
Nasal nitric oxide is not altered by topical anesthesia.
Am J Rhinol, 14 (2000), pp. 121-124
[55]
WC Dillon, V Hampl, PJ Shultz, JB Rubins, SL Archer.
Origins of breath nitric oxide in humans.
Chest, 110 (1996), pp. 930-938
[56]
E Weitzberg, JO Lundberg.
Humming greatly increases nasal nitric oxide.
Am J Respir Crit Care Med, 166 (2002), pp. 131-132
Copyright © 2004. Sociedad Española de Neumología y Cirugía Torácica (SEPAR)