Journal Information
Vol. 41. Issue 1.
Pages 34-41 (January 2005)
Share
Share
Download PDF
More article options
Vol. 41. Issue 1.
Pages 34-41 (January 2005)
Review Articles
Full text access
Molecular Mechanisms of Glucocorticoids
Visits
7618
B.G. Cosíoa,
Corresponding author
bcosio@hsd.es

Correspondence: Dr. B.G. Cosío. Servicio de Neumología. Hospital Universitario Son Dureta. Andrea Doria, 55. 07014 Palma de Mallorca. Baleares. España
, A. Torregob, I.M. Adcockb
a Servicio de Neumología, Hospital Universitario Son Dureta, Palma de Mallorca, Baleares, Spain
b Department of Thoracic Medicine, National Heart and Lung Institute, Imperial College, London, United Kingdom
This item has received
Article information
Full text is only aviable in PDF
REFERENCES
[1]
PJ Barnes.
Anti-inflammatory actions of glucocorticoids: molecular mechanisms.
Clin Sci (Lond), 94 (1998), pp. 557-572
[2]
T Reichstein, J von Euw.
Constituents of the adrenal cortex: 28. isolation of substance Q (desoxycorticosterone) and R with other materials.
Helvet Chim Acta., 21 (1938), pp. 1181
[3]
PJ Barnes.
Inhaled glucocorticoids for asthma.
N Engl J Med., 332 (1995), pp. 868-875
[4]
SP Umland, RP Schleimer, SL Johnston.
Review of the molecular and cellular mechanisms of action of glucocorticoids for use in asthma.
Pulm Pharmacol Ther., 15 (2002), pp. 35-50
[5]
IM Adcock.
Glucocorticoids: new mechanisms and future agents.
Curr Allergy Asthma Rep., 3 (2003), pp. 249-257
[6]
G Pelaia, A Vatrella, G Cuda, R Maselli, SA Marsico.
Molecular mechanisms of corticosteroid actions in chronic inflammatory airway diseases.
Life Sci., 72 (2003), pp. 1549-1561
[7]
IM Adcock, K Ito.
Molecular mechanisms of corticosteroid actions.
Monaldi Arch Chest Dis., 55 (2000), pp. 256-266
[8]
AF Holm, T Godthelp, WJ Fokkens, EA Severijnen, PG Mulder, TM Vroom, et al.
Long-term effects of corticosteroid nasal spray on nasal inflammatory cells in patients with perennial allergic rhinitis.
Clin Exp Allergy, 29 (1999), pp. 1356-1366
[9]
PJ Barnes.
Molecular mechanisms of steroid action in asthma.
J Allergy Clin Immunol, 97 (1996), pp. 159-168
[10]
PJ Barnes, S Pedersen, WW Busse.
Efficacy and safety of inhaled corticosteroids. New developments.
Am J Respir Crit Care Med., 157 (1998), pp. S1-S53
[11]
DY Leung, JW Bloom.
Update on glucocorticoid action and resistance.
J Allergy Clin Immunol., 11 1 (2003), pp. 3-22
[12]
RH Oakley, M Sar, JA Cidlowski.
The human glucocorticoid receptor beta isoform. Expression, biochemical properties, and putative function.
J Biol Chem., 271 (1996), pp. 9550-9559
[13]
A Torrego, L Pujols, C Picado.
Respuesta a tratamiento con glucocorticoideos en asma. Papel de las isoformas alfa y beta del receptor glucocorticoideo.
Arch Bronconeumol., 38 (2002), pp. 436.436-436.440
[14]
DF Smith, DO Toft.
Steroid receptors and their associated proteins.
Mol Endocrinol., 7 (1993), pp. 4-11
[15]
HM Reichardt, JP Tuckermann, M Gottlicher, M Vujic, F Weih, P Angel, et al.
Repression of inflammatory responses in the absence of DNA binding by the glucocorticoid receptor.
EMBO J., 20 (2001), pp. 7168-7173
[16]
IM Adcock, SJ Lane.
Corticosteroid-insensitive asthma: molecular mechanisms.
J Endocrinol., 178 (2003), pp. 347-355
[17]
M Kagoshima, K Ito, B Cosio, IM Adcock.
Glucocorticoid suppression of nuclear factor-kappa B: a role for histone modifications.
Biochem Soc Trans., 31 (2003), pp. 60-65
[18]
IM Adcock.
Molecular mechanisms of glucocorticosteroid actions.
Pulm Pharmacol Ther., 13 (2000), pp. 115-126
[19]
T Meyer, J Carlstedt-Duke, DB Starr.
A weak TATA box is a prerequisite for glucocorticoid-dependent repression of the osteocalcin gene.
J Biol Chem., 272 (1997), pp. 30709-30714
[20]
C Jonat, HJ Rahmsdorf, KK Park, AC Cato, S Gebel, H Ponta, et al.
Antitumor promotion and antiinflammation: down-modulation of AP-1 (Fos/Jun) activity by glucocorticoid hormone.
Cell, 62 (1990), pp. 1189-1204
[21]
A Ray, KE Prefontaine.
Physical association and functional antagonism between the p65 subunit of transcription factor NF- kappa B and the glucocorticoid receptor.
Proc Natl Acad Sci U S A, 91 (1994), pp. 752-756
[22]
Z Zhang, S Jones, JS Hagood, NL Fuentes, GM Fuller.
STAT3 acts as a co-activator of glucocorticoid receptor signaling.
J Biol Chem., 272 (1997), pp. 30607-30610
[23]
E Stocklin, M Wissler, F Gouilleux, B Groner.
Functional interactions between Stat5 and the glucocorticoid receptor.
Nature, 383 (1996), pp. 726-728
[24]
R Moriggl, S Berchtold, K Friedrich, GJ Standke, W Kammer, M Heim, et al.
Comparison of the transactivation domains of Stat5 and Stat6 in lymphoid cells and mammary epithelial cells.
Mol Cell Biol., 17 (1997), pp. 3663-3678
[25]
AP Wolffe, JJ Hayes.
Chromatin disruption and modification.
Nucleic Acids Res., 27 (1999), pp. 711-720
[26]
M Grunstein.
Histone acetylation in chromatin structure and transcription.
Nature, 389 (1997), pp. 349-352
[27]
KA Sheppard, KM Phelps, AJ Williams, D Thanos, CK Glass, MG Rosenfeld, et al.
Nuclear integration of glucocorticoid receptor and nuclear factor-kappa B signaling by CREB-binding protein and steroid receptor coactivator-1.
J Biol Chem., 273 (1998),
[28]
VV Ogryzko, RL Schiltz, V Russanova, BH Howard, Y Nakatani.
The transcriptional coactivators p300 and CBP are histone acetyltransferases.
Cell, 87 (1996), pp. 953-959
[29]
K Ito, PJ Barnes, IM Adcock.
Glucocorticoid receptor recruitment of histone deacetylase 2 inhibits interleukin-1beta-induced histone H4 acetylation on lysines 8 and 12.
Mol Cell Biol., 20 (2000), pp. 6891-6903
[30]
K Ito, E Jazwari, B Cosio, PJ Barnes, IM Adcock.
p65-activated histone acetyltransferase activity is repressed by glucocorticoids: Mifepristone fails to recruit HDAC2 to the p65/HAT complex.
J Biol Chem., 276 (2001), pp. 30208-30215
[31]
JL Swantek, MH Cobb, TD Geppert.
Jun N-terminal kinase/stress activated protein kinase (JNK/SAPK) is required for lipopolysaccharide stimulation of tumor necrosis factor alpha (TNF-alpha) translation: glucocorticoids inhibit TNF-alpha translation by blocking JNK/SAPK.
Mol Cell Biol., 17 (1997), pp. 6274-6282
[32]
M Bickel, RB Cohen, DH Pluznik.
Post-transcriptional regulation of granulocyte-macrophage colony-stimulating factor synthesis in murine T cells.
J Immunol., 145 (1990), pp. 840-845
[33]
R Newton, J Seybold, LM Kuitert, M Bergmann, PJ Barnes.
Repression of cyclooxygenase-2 and prostaglandin E2 release by dexamethasone occurs by transcriptional and post-transcriptional mechanisms involving loss of polyadenylated mRNA.
J Biol Chem., 273 (1998), pp. 32312-32321
[34]
RI Scheinman, PC Cogswell, AK Lofquist, AS Baldwin Jr.
Role of transcriptional activation of I kappa B alpha in mediation of immunosuppression by glucocorticoids.
Science, 270 (1995), pp. 283-286
[35]
C Brostjan, J Anrather, V Csizmadia, D Stroka, M Soares, FH Bach, et al.
Glucocorticoid-mediated repression of NF-kappa B activity in endothelial cells does not involve induction of I-kappa-Balpha synthesis.
J Biol Chem., 271 (1996), pp. 19612-19616
[36]
JD Croxtall, Q Choudhury, H Tokumoto, RJ Flower.
Lipocortin-1 and the control of arachidonic acid release in cell signalling. Glucocorticoids (changed from glucorticoids) inhibit G protein-dependent activation of cPLA2 activity.
Biochem Pharmacol., 50 (1995), pp. 465-474
[37]
FF Davidson, MD Lister, EA Dennis.
Binding and inhibition studies on lipocortins using phosphatidylcholine vesicles and phospholipase A2 from snake venom, pancreas, and a macrophage-like cell line.
J Biol Chem., 265 (1990), pp. 5602-5609
[38]
M John, S Lim, J Seybold, P Jose, A Robichaud, B O'Connor, et al.
Inhaled corticosteroids increase interleukin-10 but reduce macrophage inflammatory protein-1 alpha, granulocyte-macrophage colony-stimulating factor, and interferon-gamma release from alveolar macrophages in asthma.
Am J Respir Crit Care Med., 157 (1998), pp. 256-262
[39]
J Atsuta, J Plitt, BS Bochner, RP Schleimer.
Inhibition of VCAM1 expression in human bronchial epithelial cells by glucocorticoids.
Am J Respir Cell Mol Biol., 20 (1999), pp. 643-650
[40]
EB Haddad, AJ Fox, J Rousell, G Burgess, P McIntyre, PJ Barnes, et al.
Post-transcriptional regulation of bradykinin B1 and B2 receptor gene expression in human lung fibroblasts by tumor necrosis factor-alpha: modulation by dexamethasone.
Mol Pharmacol., 57 (2000), pp. 1123-1131
[41]
GM Walsh.
Mechanisms of human eosinophil survival and apoptosis.
Clin Exp Allergy, 27 (1997), pp. 482-487
[42]
LC Meagher, JM Cousin, JR Seckl, C Haslett.
Opposing effects of glucocorticoids on the rate of apoptosis in neutrophilic and eosinophilic granulocytes.
J Immunol., 156 (1996), pp. 4422-4428
[43]
JC Mak, M Nishikawa, PJ Barnes.
Glucocorticosteroids increase beta 2-adrenergic receptor transcription in human lung.
Am J Physiol., 268 (1995), pp. L41-LL6
[44]
S Heck, M Kullmann, A Gast, H Ponta, HJ Rahmsdorf, P Herrlich, et al.
A distinct modulating domain in glucocorticoid receptor monomers in the repression of activity of the transcription factor. AP-1.
EMBO J., 13 (1994), pp. 4087-4095
[45]
H Schacke, A Schottelius, WD Docke, P Strehlke, S Jaroch, N Schmees, et al.
Dissociation of transactivation from transrepression by a selective glucocorticoid receptor agonist leads to separation of therapeutic effects from side effects.
Proc Natl Acad Sci USA, 101 (2004), pp. 227-232
[46]
PJ Barnes, AJ Woolcock.
Difficult asthma.
Eur Respir J., 12 (1998), pp. 1209-1218
[47]
SJ Szefler, DY Leung.
Glucocorticoid-resistant asthma: pathogenesis and clinical implications for management.
Eur Respir J., 10 (1997), pp. 1640-1647
[48]
SJ Lane, IM Adcock, D Richards, C Hawrylowicz, PJ Barnes, TH Lee.
Corticosteroid-resistant bronchial asthma is associated with increased c-fos expression in monocytes and T lymphocytes.
J Clin Invest., 102 (1998), pp. 2156-2164
[49]
PJ Barnes, AP Greening, GK Crompton.
Glucocorticoid resistance in asthma.
Am J Respir Crit Care Med., 152 (1995), pp. S125-SS40
[50]
VM Keatings, A Jatakanon, YM Worsdell, PJ Barnes.
Effects of inhaled and oral glucocorticoids on inflammatory indices in asthma and COPD.
Am J Respir Crit Care Med., 155 (1997), pp. 542-548
[51]
SV Culpitt, W Maziak, S Loukidis, JA Nightingale, JL Matthews, PJ Barnes.
Effect of high dose inhaled steroid on cells, cytokines, and proteases in induced sputum in chronic obstructive pulmonary disease.
Am J Respir Crit Care Med., 160 (1999), pp. 1635-1639
[52]
K Okamoto, H Tanaka, H Ogawa, Y Makino, H Eguchi, S Hayashi, et al.
Redox-dependent regulation of nuclear import of the glucocorticoid receptor.
J Biol Chem., 274 (1999), pp. 10363-10371
[53]
K Okamoto, H Tanaka, Y Makino, I Makino.
Restoration of the glucocorticoid receptor function by the phosphodiester compound of vitamins C and E, EPC-K1 (L-ascorbic acid 2-[3,4-dihydro2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-2H-1-benzopyran6-yl hydrogen phosphate] potassium salt), via a redox-dependent mechanism.
Biochem Pharmacol., 56 (1998), pp. 79-86
[54]
BG Cosio, E Jazrawi, PJ Barnes, IM Adcock.
Oxidative stress augments cytokine production in different cell lines.
Am J Respir Crit Care Med., 165 (2002), pp. A88
[55]
K Ito, S Lim, G Caramori, KF Chung, PJ Barnes, IM Adcock.
Cigarette smoking reduces histone deacetylase 2 expression, enhances cytokine expression, and inhibits glucocorticoid actions in alveolar macrophages.
FASEB J., 15 (2001), pp. 1110-1112
[56]
BG Cosio, L Isaprouni, K Ito, E Jazrawi, IM Adcock, PJ Barnes.
Theophylline restores histone deacetylase activity and steroid responses in COPD macrophages.
J Exp Med., 200 (2004), pp. 689-695
[57]
IM Adcock.
Glucocorticoid-regulated transcription factors.
Pulm Pharmacol Ther., 14 (2001), pp. 211-219
Copyright © 2005. Sociedad Española de Neumología y Cirugía Torácica (SEPAR)
Archivos de Bronconeumología
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?