Journal Information
Vol. 44. Issue 5.
Pages 229-232 (January 2008)
Vol. 44. Issue 5.
Pages 229-232 (January 2008)
Editorial
Full text access
Macrolides: Not Just Antibiotics
Visits
6813
Rosa María Girón
, Julio Ancochea
Corresponding author
med002861@nacom.es
Correspondence: Dr R.M. Girón Servicio de Neumología, Hospital Universitario de la Princesa Diego de León, 62 28006 Madrid, Spain
Correspondence: Dr R.M. Girón Servicio de Neumología, Hospital Universitario de la Princesa Diego de León, 62 28006 Madrid, Spain
Servicio de Neumología, Hospital Universitario de la Princesa, Madrid, Spain
This item has received
Article information
Full text is only available in PDF
References
[1]
DP Healy.
Macrolide immunomodulation of chronic respiratory diseases.
Curr Infect Dis Rep, 9 (2007), pp. 7-13
[2]
A Jaffe, A Bush.
Anti-inflammatory effects of macrolides in lung diseases.
Pediatr Pulmonol, 31 (2001), pp. 464-473
[3]
J Mensa, E García-Vazquez, J Vila.
Macrólidos, cetólidos y estreptograminas.
Enferm Infecc Microbiol Clin, 21 (2003), pp. 200-208
[4]
J McArdle, J Talwalkar.
Macrolides in cystic fibrosis.
Cystic fibrosis, pp. 347-360
[5]
K Tateda, R Comte, JC Pechere, T Köhler, K Yamaguchi, C Van Delden.
Azithromycin inhibits quorum sensing in Pseudomonas aeruginosa.
Antimicrob Agents Chemother, 45 (2001), pp. 1930-1933
[6]
U Baumann, J Fischer, P Gudowius, M Lingner, S Herrmann, B Tümmler, et al.
Buccal adherence of Pseudomonas aeruginosa in patients with cystic fibrosis and long-term therapy with azithromycin.
Infection, 29 (2001), pp. 7-11
[7]
D Nguyen, M Emond, N Mayer-Hamblett, L Saiman, B Marshall, J Burns.
Clinical response to azithromycin in cystic fibrosis correlates with in vitro effects on Pseudomonas aeruginosa phenotypes.
Pediatr Pulmonol, 42 (2007), pp. 533-541
[8]
Y Imamura, K Yanagihara, Y Mizuta, M Seki, H Ohno, Y Higashiyama, et al.
Azithromycin inhibits MUC5AC production induced by the Pseudomonas aeruginosa autoinducer N-(3-oxodode-canoyl) homoserine lactone in NCL-H292 cells.
Antimicrob Agents Chemother, 48 (2004), pp. 3457-3461
[9]
J Tamaoki, K Takeyama, E Tagaya, K Cono.
Effect of clarithromycin on sputum production and its rheological properties in chronic respiratory tract infections.
Antimicrob Agents Chemother, 39 (1995), pp. 1688-1690
[10]
U Pradal, A Delmarco, M Morganti, M Cipolli, E Mini, G Cazzola.
Long-term azithromycin in cystic fibrosis: another possible mechanism of action?.
J Chemother, 17 (2005), pp. 393-400
[11]
T Wagner, J Burns.
Anti-inflammatory properties of macrolides.
Pediatr Infect Dis J, 26 (2007), pp. 75-76
[12]
C Cigana, B Asale, P Melotti.
Azithromycin selectively reduces tumor necrosis factor alpha level in cystic fibrosis airway epithelial cells.
Antimicrob Agents Chemother, 51 (2007), pp. 975-981
[13]
O Culic, V Erakovic, I Cepelak, K Barisic, K Brajsa, Z Ferencic, et al.
Azithromycin modulates neutrophil function and circulating inflammatory mediators in healthy human subjects.
Eur J Pharmacol, 450 (2002), pp. 277-289
[14]
W Tsai, M Rodríguez, K Young, JC Deng, VJ Thannickal, K Tateda, et al.
Azithromycin blocks neutrophil recruitment in Pseudomonas endobronchial infection.
Am J Respir Care Med, 170 (2004), pp. 1331-1339
[15]
G Ferrara, M Losi, F Franco, L Corbetta, L Fabbri, L Richeldi.
Macrolides in the treatment of asthma and cystic fibrosis.
Respir Med, 99 (2005), pp. 1-10
[16]
S Johnston.
Macrolide antibiotics and asthma treatment.
J Allergy Clin Immunol, 117 (2006), pp. 1233-1236
[17]
L Richeldi, G Ferrara, LM Fabbri, TJ Lasserson, PG Gibson.
Macrolides for chronic asthma.
Cochrane Database Syst Rev, (2005), pp. CD002997
[18]
T Shoji, S Yoshida, H Sakamoto, H Hasegawa, H Nakagawa, H Amayasu.
Anti-inflammtory effect of roxithromycin in patients with aspirin-intolerant asthma.
Clin Exp Allergy, 29 (1999), pp. 950-956
[19]
AK Kamada, M Hill, D Ikle, A Brenner, S Szefler.
Efficacy and safety of low-dose troleandomycin therapy in children with severe steroid-requiring asthma.
J Allergy Clin Immunol, 91 (1993), pp. 873-882
[20]
H Nelson, D Camilos, P Corsello, N Levesque, A Buchmeier, B Bucher.
A double-blind study of troleandomycin and methylprednisolone in asthmatic subjects who require daily corticosteroids.
Am Rev Respir Dis, 147 (1993), pp. 398-404
[21]
M Kraft, G Cassell, J Pak, R Martin.
Mycoplasma pneumoniae and Chlamydia pneumoniae in asthma: effect of clarithromycin.
Chest, 121 (2002), pp. 1782-1788
[22]
P Black, C Jenkins, R Scicchitano, F Blasi, L Allegar, G Mills, et al.
Trial of roxithromycin in subjects with asthma and serological evidence of infection with Chlamydia pneumoniae.
Am J Respir Crit Care Med, 164 (2001), pp. 536-541
[23]
E Kostadima, S Tsiodras, E Alexopoulos, A Kaditis, I Mavrou, N Georgatou, et al.
Clarithromycin reduces the severity of bronchial hyperresponsiveness in patients with asthma.
Eur Respir J, 23 (2004), pp. 714-717
[24]
H Amayasu, S Yacida, S Ebana, Y Yamamoto, T Nishikawa, T Shoji, et al.
Clarithromycin suppresses bronchial hyperresponsiveness associated with eosinophilic inflammation in patients with asthma.
Ann Allergy Asthma Immunol, 84 (2000), pp. 594-598
[25]
M Schultz.
Macrolide activities beyond their antimicrobial effects: macrolides in diffuse panbronchiolitis and cystic fibrosis.
J Antimicrob Chemother, 54 (2004), pp. 21-28
[26]
S Kudoh, A Azuma, M Yamamoto, T Izumi, M Ando.
Improvement of survival in patients with diffuse panbronchiolitis treated with low-dose erythromycin.
Am J Respir Crit Care Med, 157 (1998), pp. 1829-1832
[27]
J Kadota, H Mukae, H Ishii, T Nagata, H Kaida, K Tomono, et al.
Long-term efficacy and safety of clarithromycin treatment in patients with diffuse panbronchiolitis.
Respir Med, 97 (2003), pp. 844-850
[28]
K Southern, P Barrer, A Solis.
Macrolide antibiotics for cystic fibrosis.
Cochrane Database Syst Rev, (2004), pp. CD002203
[29]
A Equi, I Balfour-Lynn, A Bush, M Rosenthal.
Long term azithromycin in children with cystic fibrosis: a randomised, placebo-controlled crossover trial.
Lancet, 28 (2002), pp. 978-984
[30]
J Wolter, S Seeney, S Bell, S Bowler, P Mases, J McCormack.
Effect of long term treatment with azithromycin on disease parameters in cystic fibrosis: a randomised trial.
Thorax, 57 (2002), pp. 212-216
[31]
L Saiman.
The use of macrolide antibiotics in patients with cystic fibrosis.
Curr Opin Pulm Med, 10 (2004), pp. 515-523
[32]
M Cipolli, G Cazzola, A Novelli, M Caseta, S Fallani, T Mazzei.
Azithromycin concentration in serum and bronchial secretions of patients with cystic fibrosis.
Clin Drug Invest, 21 (2001), pp. 353-360
[33]
L Saiman, N Mayer-Hamblett, P Campbell, B Marshall, Group Macrolide Study.
Heterogeneity of treatment response to azithromycin in patients with cystic fibrosis.
Am J Respir Crit Care Med, 172 (2005), pp. 1008-1012
[34]
A Clement, A Tamalet, E Leroux, S Ravilly, B Fauroux, J Jais.
Long term effects of azithromycin in patients with cystic fibrosis: a double-blind, placebo-controlled trial.
Thorax, 61 (2006), pp. 895-902
[35]
K Tsang, P Ho, K Chan, M Ip, W Lam, C Ho, et al.
A pilot study of low-dose erythromycin in bronchiectasis.
Eur Respir J, 13 (1999), pp. 361-364
[36]
Y Koh, M Lee, Y Sun, K Sung, J Chae.
Effect of roxithromycin on airway responsiveness in children with bronchiectasis: a double-blind, placebo-controlled study.
Eur Respir J, 10 (1997), pp. 994-999
[37]
G Davies, R Wilson.
Prophylactic antibiotic treatment of bronchiectasis with azithromycin.
Thorax, 59 (2004), pp. 540-541
[38]
B Yates, DM Murphy, IA Forrest, C Ward, RM Rutherford, AJ Fisher, et al.
Azithromycin reverses airflow obstruction in established bronchiolitis obliterans syndrome.
Am J Respir Crit Care Med, 172 (2005), pp. 772-775
[39]
S Gerhardt, J McDyer, R Girgis, J Conte, S Yang, J Orens.
Maintenance azithromycin therapy for bronchiolitis obliterans syndrome: results of a pilot study.
Am J Respir Crit Care Med, 168 (2003), pp. 121-125
[40]
GM Verleden, LJ Dupont, DE Van Raemdonck.
Is it bronchiolitis obliterans syndrome or is it chronic rejection: a reappraisal?.
Eur Respir J, 25 (2005), pp. 221-224
[41]
D Shitrit, D Bendayan, S Gidon, M Saute, I Bakal, MR Kramer.
Long-term azithromycin use for treatment of bronchiolitis obliterans syndrome in lung transplant recipients.
J Heart Lung Transplant, 24 (2005), pp. 1440-1443
[42]
D Banerjee, OA Khair, D Honeybourne.
The effect of oral clarithromycin on health status and sputum bacteriology in stable COPD.
Respir Med, 99 (2005), pp. 208-215
[43]
M Gotfried.
Macrolides for the treatment of chronic sinusitis, asthma, and COPD.
Chest, 125 (2004), pp. 52S-61S
[44]
LA Mandell, RG Wunderink, A Anzueto, JG Bartlett, GD Campbell, NC Dean, American Thoracic Society, et al.
Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community–acquired pneumonia in adults.
Clin Infect Dis, 44 (2007), pp. S27-S72
[45]
I Alfageme, J Aspa, S Bello, J Blanquer, R Blanquer, L Borderías, et al.
Normativas para el diagnóstico y el tratamiento de la neumonía adquirida en la comunidad. Sociedad Española de Neumología y Cirugía Torácica (SEPAR).
Arch Bronconeumol, 41 (2005), pp. 272-289
[46]
R Panpanich, P Lerttrakarnnon, M Laopaiboon.
Azithromycin for acute lower respiratory tract infections.
Cochrane Database Syst Rev, (2004), pp. CD001954
[47]
G Amsted.
Anti-inflammatory effect of macrolidesan underappreciated benefit in the treatment of community-acquired respiratory tract infections and chronic inflammatory pulmonary conditions?.
J Antimicrobiol Chemother, 55 (2005), pp. 10-21
Copyright © 2008. Sociedad Española de Neumología y Cirugía Torácica (SEPAR)