Journal Information
Vol. 44. Issue 5.
Pages 229-232 (January 2008)
Share
Share
Download PDF
More article options
Vol. 44. Issue 5.
Pages 229-232 (January 2008)
Editorial
Full text access
Macrolides: Not Just Antibiotics
Visits
6473
Rosa María Girón
Corresponding author
med002861@nacom.es

Correspondence: Dr R.M. Girón Servicio de Neumología, Hospital Universitario de la Princesa Diego de León, 62 28006 Madrid, Spain
, Julio Ancochea
Servicio de Neumología, Hospital Universitario de la Princesa, Madrid, Spain
This item has received
Article information
Full text is only aviable in PDF
References
[1]
DP Healy.
Macrolide immunomodulation of chronic respiratory diseases.
Curr Infect Dis Rep, 9 (2007), pp. 7-13
[2]
A Jaffe, A Bush.
Anti-inflammatory effects of macrolides in lung diseases.
Pediatr Pulmonol, 31 (2001), pp. 464-473
[3]
J Mensa, E García-Vazquez, J Vila.
Macrólidos, cetólidos y estreptograminas.
Enferm Infecc Microbiol Clin, 21 (2003), pp. 200-208
[4]
J McArdle, J Talwalkar.
Macrolides in cystic fibrosis.
Cystic fibrosis, pp. 347-360
[5]
K Tateda, R Comte, JC Pechere, T Köhler, K Yamaguchi, C Van Delden.
Azithromycin inhibits quorum sensing in Pseudomonas aeruginosa.
Antimicrob Agents Chemother, 45 (2001), pp. 1930-1933
[6]
U Baumann, J Fischer, P Gudowius, M Lingner, S Herrmann, B Tümmler, et al.
Buccal adherence of Pseudomonas aeruginosa in patients with cystic fibrosis and long-term therapy with azithromycin.
Infection, 29 (2001), pp. 7-11
[7]
D Nguyen, M Emond, N Mayer-Hamblett, L Saiman, B Marshall, J Burns.
Clinical response to azithromycin in cystic fibrosis correlates with in vitro effects on Pseudomonas aeruginosa phenotypes.
Pediatr Pulmonol, 42 (2007), pp. 533-541
[8]
Y Imamura, K Yanagihara, Y Mizuta, M Seki, H Ohno, Y Higashiyama, et al.
Azithromycin inhibits MUC5AC production induced by the Pseudomonas aeruginosa autoinducer N-(3-oxodode-canoyl) homoserine lactone in NCL-H292 cells.
Antimicrob Agents Chemother, 48 (2004), pp. 3457-3461
[9]
J Tamaoki, K Takeyama, E Tagaya, K Cono.
Effect of clarithromycin on sputum production and its rheological properties in chronic respiratory tract infections.
Antimicrob Agents Chemother, 39 (1995), pp. 1688-1690
[10]
U Pradal, A Delmarco, M Morganti, M Cipolli, E Mini, G Cazzola.
Long-term azithromycin in cystic fibrosis: another possible mechanism of action?.
J Chemother, 17 (2005), pp. 393-400
[11]
T Wagner, J Burns.
Anti-inflammatory properties of macrolides.
Pediatr Infect Dis J, 26 (2007), pp. 75-76
[12]
C Cigana, B Asale, P Melotti.
Azithromycin selectively reduces tumor necrosis factor alpha level in cystic fibrosis airway epithelial cells.
Antimicrob Agents Chemother, 51 (2007), pp. 975-981
[13]
O Culic, V Erakovic, I Cepelak, K Barisic, K Brajsa, Z Ferencic, et al.
Azithromycin modulates neutrophil function and circulating inflammatory mediators in healthy human subjects.
Eur J Pharmacol, 450 (2002), pp. 277-289
[14]
W Tsai, M Rodríguez, K Young, JC Deng, VJ Thannickal, K Tateda, et al.
Azithromycin blocks neutrophil recruitment in Pseudomonas endobronchial infection.
Am J Respir Care Med, 170 (2004), pp. 1331-1339
[15]
G Ferrara, M Losi, F Franco, L Corbetta, L Fabbri, L Richeldi.
Macrolides in the treatment of asthma and cystic fibrosis.
Respir Med, 99 (2005), pp. 1-10
[16]
S Johnston.
Macrolide antibiotics and asthma treatment.
J Allergy Clin Immunol, 117 (2006), pp. 1233-1236
[17]
L Richeldi, G Ferrara, LM Fabbri, TJ Lasserson, PG Gibson.
Macrolides for chronic asthma.
Cochrane Database Syst Rev, (2005), pp. CD002997
[18]
T Shoji, S Yoshida, H Sakamoto, H Hasegawa, H Nakagawa, H Amayasu.
Anti-inflammtory effect of roxithromycin in patients with aspirin-intolerant asthma.
Clin Exp Allergy, 29 (1999), pp. 950-956
[19]
AK Kamada, M Hill, D Ikle, A Brenner, S Szefler.
Efficacy and safety of low-dose troleandomycin therapy in children with severe steroid-requiring asthma.
J Allergy Clin Immunol, 91 (1993), pp. 873-882
[20]
H Nelson, D Camilos, P Corsello, N Levesque, A Buchmeier, B Bucher.
A double-blind study of troleandomycin and methylprednisolone in asthmatic subjects who require daily corticosteroids.
Am Rev Respir Dis, 147 (1993), pp. 398-404
[21]
M Kraft, G Cassell, J Pak, R Martin.
Mycoplasma pneumoniae and Chlamydia pneumoniae in asthma: effect of clarithromycin.
Chest, 121 (2002), pp. 1782-1788
[22]
P Black, C Jenkins, R Scicchitano, F Blasi, L Allegar, G Mills, et al.
Trial of roxithromycin in subjects with asthma and serological evidence of infection with Chlamydia pneumoniae.
Am J Respir Crit Care Med, 164 (2001), pp. 536-541
[23]
E Kostadima, S Tsiodras, E Alexopoulos, A Kaditis, I Mavrou, N Georgatou, et al.
Clarithromycin reduces the severity of bronchial hyperresponsiveness in patients with asthma.
Eur Respir J, 23 (2004), pp. 714-717
[24]
H Amayasu, S Yacida, S Ebana, Y Yamamoto, T Nishikawa, T Shoji, et al.
Clarithromycin suppresses bronchial hyperresponsiveness associated with eosinophilic inflammation in patients with asthma.
Ann Allergy Asthma Immunol, 84 (2000), pp. 594-598
[25]
M Schultz.
Macrolide activities beyond their antimicrobial effects: macrolides in diffuse panbronchiolitis and cystic fibrosis.
J Antimicrob Chemother, 54 (2004), pp. 21-28
[26]
S Kudoh, A Azuma, M Yamamoto, T Izumi, M Ando.
Improvement of survival in patients with diffuse panbronchiolitis treated with low-dose erythromycin.
Am J Respir Crit Care Med, 157 (1998), pp. 1829-1832
[27]
J Kadota, H Mukae, H Ishii, T Nagata, H Kaida, K Tomono, et al.
Long-term efficacy and safety of clarithromycin treatment in patients with diffuse panbronchiolitis.
Respir Med, 97 (2003), pp. 844-850
[28]
K Southern, P Barrer, A Solis.
Macrolide antibiotics for cystic fibrosis.
Cochrane Database Syst Rev, (2004), pp. CD002203
[29]
A Equi, I Balfour-Lynn, A Bush, M Rosenthal.
Long term azithromycin in children with cystic fibrosis: a randomised, placebo-controlled crossover trial.
Lancet, 28 (2002), pp. 978-984
[30]
J Wolter, S Seeney, S Bell, S Bowler, P Mases, J McCormack.
Effect of long term treatment with azithromycin on disease parameters in cystic fibrosis: a randomised trial.
Thorax, 57 (2002), pp. 212-216
[31]
L Saiman.
The use of macrolide antibiotics in patients with cystic fibrosis.
Curr Opin Pulm Med, 10 (2004), pp. 515-523
[32]
M Cipolli, G Cazzola, A Novelli, M Caseta, S Fallani, T Mazzei.
Azithromycin concentration in serum and bronchial secretions of patients with cystic fibrosis.
Clin Drug Invest, 21 (2001), pp. 353-360
[33]
L Saiman, N Mayer-Hamblett, P Campbell, B Marshall, Group Macrolide Study.
Heterogeneity of treatment response to azithromycin in patients with cystic fibrosis.
Am J Respir Crit Care Med, 172 (2005), pp. 1008-1012
[34]
A Clement, A Tamalet, E Leroux, S Ravilly, B Fauroux, J Jais.
Long term effects of azithromycin in patients with cystic fibrosis: a double-blind, placebo-controlled trial.
Thorax, 61 (2006), pp. 895-902
[35]
K Tsang, P Ho, K Chan, M Ip, W Lam, C Ho, et al.
A pilot study of low-dose erythromycin in bronchiectasis.
Eur Respir J, 13 (1999), pp. 361-364
[36]
Y Koh, M Lee, Y Sun, K Sung, J Chae.
Effect of roxithromycin on airway responsiveness in children with bronchiectasis: a double-blind, placebo-controlled study.
Eur Respir J, 10 (1997), pp. 994-999
[37]
G Davies, R Wilson.
Prophylactic antibiotic treatment of bronchiectasis with azithromycin.
Thorax, 59 (2004), pp. 540-541
[38]
B Yates, DM Murphy, IA Forrest, C Ward, RM Rutherford, AJ Fisher, et al.
Azithromycin reverses airflow obstruction in established bronchiolitis obliterans syndrome.
Am J Respir Crit Care Med, 172 (2005), pp. 772-775
[39]
S Gerhardt, J McDyer, R Girgis, J Conte, S Yang, J Orens.
Maintenance azithromycin therapy for bronchiolitis obliterans syndrome: results of a pilot study.
Am J Respir Crit Care Med, 168 (2003), pp. 121-125
[40]
GM Verleden, LJ Dupont, DE Van Raemdonck.
Is it bronchiolitis obliterans syndrome or is it chronic rejection: a reappraisal?.
Eur Respir J, 25 (2005), pp. 221-224
[41]
D Shitrit, D Bendayan, S Gidon, M Saute, I Bakal, MR Kramer.
Long-term azithromycin use for treatment of bronchiolitis obliterans syndrome in lung transplant recipients.
J Heart Lung Transplant, 24 (2005), pp. 1440-1443
[42]
D Banerjee, OA Khair, D Honeybourne.
The effect of oral clarithromycin on health status and sputum bacteriology in stable COPD.
Respir Med, 99 (2005), pp. 208-215
[43]
M Gotfried.
Macrolides for the treatment of chronic sinusitis, asthma, and COPD.
Chest, 125 (2004), pp. 52S-61S
[44]
LA Mandell, RG Wunderink, A Anzueto, JG Bartlett, GD Campbell, NC Dean, American Thoracic Society, et al.
Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community–acquired pneumonia in adults.
Clin Infect Dis, 44 (2007), pp. S27-S72
[45]
I Alfageme, J Aspa, S Bello, J Blanquer, R Blanquer, L Borderías, et al.
Normativas para el diagnóstico y el tratamiento de la neumonía adquirida en la comunidad. Sociedad Española de Neumología y Cirugía Torácica (SEPAR).
Arch Bronconeumol, 41 (2005), pp. 272-289
[46]
R Panpanich, P Lerttrakarnnon, M Laopaiboon.
Azithromycin for acute lower respiratory tract infections.
Cochrane Database Syst Rev, (2004), pp. CD001954
[47]
G Amsted.
Anti-inflammatory effect of macrolidesan underappreciated benefit in the treatment of community-acquired respiratory tract infections and chronic inflammatory pulmonary conditions?.
J Antimicrobiol Chemother, 55 (2005), pp. 10-21
[48]
RA Fecik, PL Nguyen, L Venkatraman.
Approaches to the synthesis of immunolides: selective immunomodulatory macrolides for cystic fibrosis.
Curr Opin Drug Discov Devel, 8 (2005), pp. 741-747
Copyright © 2008. Sociedad Española de Neumología y Cirugía Torácica (SEPAR)
Archivos de Bronconeumología
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?