Journal Information
Vol. 45. Issue 6.
Pages 279-285 (June 2009)
Share
Share
Download PDF
More article options
Vol. 45. Issue 6.
Pages 279-285 (June 2009)
Original Article
Full text access
Inflammatory Cytokines and Repair Factors in the Intercostal Muscles of Patients With Severe COPD
Citocinas inflamatorias y factores de reparación en los músculos intercostales de pacientes con EPOC grave
Visits
4873
Carme Casadevall, Carlos Coronell, Pilar Ausín, Juana Martínez-Llorens, Mauricio Orozco-Levi, Esther Barreiro, Joaquim Gea
Corresponding author
jgea@imim.es

Corresponding author.
, on behalf of the ENIGMA Group in COPD
Servei de Pneumologia-URMAR, Hospital del Mar-Institut Municipal d’Investigació Mèdica (IMIM), Universitat Pompeu Fabra (UPF), Barcelona, Spain. CIBER de Enfermedades Respiratorias (CibeRes), ISCIII, Ministerio de Ciencia y Tecnología, Bunyola, Balears, Spain
This item has received
Article information
Abstract
Objective

There is disagreement regarding the local action of cytokines in the respiratory muscles of patients with chronic obstructive pulmonary disease (COPD). The objective of this study was to analyze the relationships between cytokine expression and genetic activation of the mechanisms of muscle repair.

Patients and Methods

Twenty-five patients with severe COPD and in stable condition were enrolled in the study. We performed a biopsy of the external intercostal muscle of the patients and analyzed the specimen for signs of muscle lesion (morphometry), infiltration of inflammatory cells (immunohistochemistry), and expression of selected genes (real-time polymerase chain reaction technique) corresponding to the cytokines (tumor necrosis factor α [TNF-α] and its type 1 and 2 receptors [TNFR1 and TNFR2], and interleukin [IL] 1β, IL-6, and IL-10), a pan-leukocyte marker (CD18), and key molecules in the repairmyogenesis pathways (Pax7, M-cadherin, and MyoD).

Results

Expression of TNFR2 is directly related to inspiratory muscle function (represented by maximum sustainable inspiratory pressure; r=0.496; P<.05), whereas expression of CD18 is inversely related (r=0.462; P<.05). Moreover, expression of the 2 TNF-α receptors was directly related to that of the key molecules of the repair pathways analyzed (TNFR1 to Pax7 [r=0.650; P<.001] and M-cadherin [r=0.678; P<.001]; TNFR2 to Pax7 [r=0.395; P<.05], M-cadherin [r=0.409; P<.05], and MyoD [r=0.418; P<.05]).

Conclusions

Expression of TNF-α receptors bears a close relationship both to activation of the myogenesis programs and to inspiratory muscle function. This reinforces our hypothesis that some local cytokines take part in the repair of respiratory muscles in patients with COPD.

Keywords:
Cellular damage
Myokines
Inflammation
Repair
Respiratory muscles
Resumen
Introducción

Las acciones locales de las citocinas en los músculos de los pacientes con enfermedad pulmonar obstructiva crónica (EPOC) se hallan sometidas a debate. El objetivo del presente estudio ha sido analizar las relaciones entre su expresión y la activación genética de programas de reparación muscular.

Pacientes y métodos

Se incluyó en el estudio a 25 pacientes con EPOC grave en situación estable. Se les realizó una biopsia del músculo intercostal externo, donde se evaluaron los signos de lesión muscular (morfometría), la infiltración de células inflamatorias (inmunohistoquímica) y la expresión de genes seleccionados (técnica de reacción en cadena de la polimerasa en tiempo real) correspondientes a las propias citocinas –factor de necrosis tumoral alfa (TNF-α) y sus receptores 1 y 2 (TNFR1 y TNFR2), e interleucinas-1β, 6 y 10–, un marcador panleucocitario (CD18) y moléculas clave en las vías de reparación-miogénesis (Pax7, M-Caderina y Mio-D).

Resultados

La expresión de TNFR2 se relacionó directamente con la función muscular inspiratoria (representada por la presión inspiratoria máxima sostenible; r = 0,496, p < 0,05), mientras que la expresión de CD18 se relacionó inversamente con ella (r = −0,462, p < 0,05). Por otra parte, la expresión de los 2 receptores del TNF-α se relacionó directamente con la de las moléculas clave de las vías de reparación analizadas (TNFR1 con Pax7, r = 0,650, y M-Caderina, r = 0,678, ambas con p < 0,001; TNFR2 con Pax7, r = 0,395, M-Caderina, r = 0,409, y Mio-D, r = 0,418, con p < 0,05 en todas).

Conclusiones

La expresión de los receptores del TNF-α guarda una estrecha relación tanto con la activación de los programas de miogénesis como con la propia función muscular inspiratoria. Este hecho refuerza nuestra hipótesis de que algunas citocinas locales participan en la reparación de los músculos respiratorios en los pacientes con EPOC.

Palabras clave:
Daño celular
Miocinas
Inflamación
Reparación
Músculos respiratorios
Full text is only aviable in PDF
References
[1.]
J. Gea, E. Barreiro, M. Orozco-Levi.
Free radicals, cytokines and respiratory muscles in COPD patients.
Clin Pulm Med, 14 (2007), pp. 117-126
[2.]
C. Casadevall, C. Coronell, A. Ramírez-Sarmiento, J. Martínez-Llorens, E. Barreiro, M. Orozco-Levi, et al.
Upregulation of proinflammatory cytokines in the intercostal muscles of COPD patients.
Eur Respir J, 30 (2007), pp. 1-7
[3.]
C. Casadevall, E. Barreiro, M. Orozco-Levi, J. Minguella, J. Gea.
Local expression of tumor necrosis factor (TNF)-alpha: is it the baddy or the goody in the story of respiratory muscle adaptation occurring in COPD? [abstract].
Proc Am Thorac Soc, 3 (2006), pp. A26
[4.]
E. Barreiro, A.MW. Schols, M.I. Polkey, J.B. Gáldiz, H.R. Gosker, E.B. Swallow, et al.
Cytokine profile in the quadriceps muscles of patients with severe COPD.
Thorax, 63 (2008), pp. 100-107
[5.]
R. Debigare, C.H. Cote, F. Maltais.
Peripheral muscle wasting in chronic obstructive pulmonary disease.
Clinical relevance and mechanisms Am J Crit Care Med, 164 (2001), pp. 1712-1717
[6.]
M.B. Reid, J. Lännergren, H. Westerblad.
Respiratory and limb muscle weakness induced by tumor necrosis factor-a. Involvement of muscle myofilaments.
Am J Respir Crit Care Med, 166 (2002), pp. 479-484
[7.]
B.K. Pedersen, K. Ostrowski, T. Rohde, H. Bruunsgaard.
The cytokine response to strenuous exercise.
Can J Physiol Pharmacol, 76 (1998), pp. 505-511
[8.]
A. Tomiya, T. Aizawa, R. Nagatomi, H. Sensui, S. Kokubun.
Myofibers express IL-6 after eccentric exercise.
Am J Sports Med, 32 (2004), pp. 503-508
[9.]
T. Vassilakopoulos, M. Divangahi, G. Rallis, O. Kishta, B. Petrof, A. Comtois, et al.
Differential cytokine gene expression in the diaphragm in response to strenuous resistive breathing.
Am J Respir Crit Care Med, 170 (2004), pp. 154-161
[10.]
S.E. Chen, E. Gerken, Y. Zhang, M. Zhan, R.K. Mohan, A.S. Li, et al.
Role of TNF-α signalling in regeneration of cardiotoxin-injured muscle.
Am J Physiol Cell Physiol, 289 (2005), pp. C1179-C1187
[11.]
S.E. Chen, B. Jin, Y.P. Li.
TNF-a regulates myogenesis and muscle regeneration by activating p38 MAPK.
Am J Physiol Cell Physiol, 292 (2007), pp. C1660-C1671
[12.]
G.L. Warren, T. Hulderman, N. Jensen, M. McKinstry, M. Mishra, M.I. Luster, et al.
Physiological role of tumor necrosis factor alpha in traumatic muscle injury.
FASEB J, 16 (2002), pp. 1630-1632
[13.]
R.J. Bryson-Richardson, P.D. Currie.
The genetics of vertebrate myogenesis.
Nat Rev Genet, 9 (2008), pp. 632-646
[14.]
Global Initiative for Chronic Obstructive Lung Disease, December 2007. Global Strategy for the Diagnosis, Management and Prevention of COPD. Available from: www.goldcopd.com
[15.]
J. Roca, J. Sanchis, A. Agustí-Vidal, F. Segarra, D. Navajas, R. Rodríguez-Roisin, et al.
Spirometric reference values from a Mediterranean population.
Bull Eur Physiopathol Respir, 22 (1986), pp. 217-224
[16.]
J. Roca, F. Burgos, J.A. Barberà, J. Sunyer, R. Rodríguez-Roisin, J. Castellsague, et al.
Prediction equations for plethysmographic lung volumes.
Respir Med, 92 (1998), pp. 454-460
[17.]
J. Roca, R. Rodríguez-Roisin, E. Cobo, F. Burgos, J. Pérez, J.L. Clausen.
Single-breath carbon monoxide diffusing capacity prediction equations from a Mediterranean population.
Am Rev Respir Dis, 141 (1990), pp. 1026-1032
[18.]
P. Morales, J. Sanchis, P.J. Lamb, J.L. Díez.
Maximum static respiratory pressures in adults. The reference values for a Mediterranean Caucasian population.
Arch Bronconeumol, 33 (2007), pp. 213-219
[19.]
A. Ramírez-Sarmiento, M. Orozco-Levi, R. Güell, E. Barreiro, N. Hernández, S. Mota, et al.
Inspiratory muscle training in patients with chronic obstructive pulmonary disease: structural adaptation and physiologic outcomes.
Am J Respir Crit Care Med, 166 (2002), pp. 1491-1497
[20.]
N.A. Macgowan, G.E. Kenneth, J.D. Road, W.D. Reid.
Diaphragm injury in individuals with airflow obstruction.
Am J Respir Crit Care Med, 163 (2001), pp. 1654-1659
[21.]
A. Scott, X. Wang, J.D. Road, W.D. Reid.
Increased injury and intramuscular collagen of the diaphragm in COPD: autopsy observations.
Eur Respir J, 27 (2006), pp. 51-59
[22.]
X. Wang, T.X. Jiang, J.D. Road, D.M. Redenbach, W.D. Reid.
Granulocytosis and increased adhesion molecules after resistive loading of the diaphragm.
Eur Respir J, 26 (2005), pp. 786-794
[23.]
H.R. Gosker, B. Kubat, G. Schaart, G.J. van der Vusse, E.F. Wouters, A.M. Schols.
Myopathological features in skeletal muscle of patients with chronic obstructive pulmonary disease.
Eur Respir J, 22 (2003), pp. 280-285
[24.]
M. Montes de Oca, S.H. Torres, J. de Sanctis, A. Mata, N. Hernández, C. Tálamo.
Skeletal muscle inflammation and nitric oxide in patients with COPD.
Eur Respir J, 26 (2005), pp. 390-397
[25.]
D.J. Mahoney, K. Carey, M.H. Fu, R. Snow, D. Cameron-Smith, G. Parise, et al.
Real-time RT-PCR analysis of housekeeping genes in human skeletal muscle following acute exercise.
Physiol Genomics, 18 (2004), pp. 226-231
[26.]
K. Livak, T.D. Schmittgen.
Analysis of relative gene expression data using real-time quantitative PCR and the 2nd method.
Methods, 25 (2001), pp. 402-408
[27.]
M. Orozco-Levi, J. Lloreta, J. Minguella, S. Serrano, J.M. Broquetas, J. Gea.
Injury of the human diaphragm associated with exertion and chronic obstructive pulmonary disease.
Am J Respir Crit Care Med, 164 (2001), pp. 1734-1739
[28.]
E. Zhu, B.J. Petrof, J. Gea, N. Comtois, A.E. Grassino.
Diaphragm muscle fiber injury after inspiratory resistive breathing.
Am J Respir Crit Care Med, 155 (1997), pp. 1110-1116
[29.]
J. Palacio, J.B. Gáldiz, M. Mariñán, M. Orozco-Levi, P. Martínez, J.J. Bech, et al.
Cellular damage and expression of IL-10 and TNF-α in skeletal muscles following resistive inspiratory breathing [abstract].
Am J Respir Crit Care Med, 163 (2001), pp. A 147
[30.]
M. Saghizadeh, J.M. Ong, T. Garvey, R.R. Henry, P.A. Kern.
The expression of TNFα by human muscle. Relationship to insulin resistance.
J Clin Invest, 97 (1996), pp. 1111-1116
[31.]
Y.P. Li, M.B. Reid.
Effect of tumor necrosis factor-alpha on skeletal muscle metabolism.
Curr Opin Rheumatol, 13 (2001), pp. 483-487
[32.]
P. Keller, C. Keller, A.L. Carey, S. Jauffred, C.P. Fischer, A. Steensberg, et al.
Interleukin-6 production by contracting human skeletal muscle: autocrine regulation by IL-6.
Biochem Biophys Res Commun, 310 (2003), pp. 550-554
[33.]
S. Koçtürk, B.M. Kayatekin, H. Resmi, O. Açikgöz, C. Kaynak, E. Ozer.
The apoptotic response to strenuous exercise of the gastrocnemius and solues muscle fibers in rats.
Eur J Appl Physiol, 102 (2008), pp. 515-524
[34.]
H. Degens, A.K. Swisher, Y.F. Heijdra, P.M. Siu, P.N. Dekhuijzen, S.E. Alway.
Apoptosis and Id2 expression in diaphragm and soleus muscle from the emphysematous hamster.
Am J Physiol Regul Integr Comp Physiol, 293 (2007), pp. R135-R144
Copyright © 2009. Sociedad Española de Neumología y Cirugía Torácica
Archivos de Bronconeumología
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?