Journal Information
Vol. 43. Issue 9.
Pages 501-507 (January 2007)
Share
Share
Download PDF
More article options
Vol. 43. Issue 9.
Pages 501-507 (January 2007)
Review Article
Full text access
Experimental Models for the Study of Pulmonary Fibrosis: Current Usefulness and Future Promise
Visits
5874
María Molina-Molina
Corresponding author
mariamolinamolina@hotmail.com

Correspondence: Dra. M. Molina-Molina. Unidad de Endoscopia Respiratoria. Servicio de Neumología. Hospital Clínic. Villarroel, 170. Barcelona. España
, Javier Pereda, Antoni Xaubet
Instituto de Investigaciones Agustí Pi i Sunyer (IDIBAPS), Unidad de Endoscopia Respiratoria, CIBER, Enfermedades Respiratorias, Servicio de Neumología, Instituto Clínico del Tórax, Hospital Clínic, Barcelona, Spain
This item has received
Article information
Abstract
Bibliography
Download PDF
Statistics

Diffuse interstitial lung diseases form a group of respiratory diseases about which many questions remain to be answered. In recent years there have been major advances in the correct diagnostic classification of each disease, and therefore, the essential foundations have been laid for investigation of their pathophysiology. However, both the triggers and the precise mechanisms that lead to irreversible changes in the lung parenchyma remain to be identified. Idiopathic pulmonary fibrosis is the most common diffuse interstitial lung disease and has the worst prognosis. Current treatments are empirical and the response is random; furthermore, they do not improve survival. Consequently, most basic research has focused on the pathophysiology of the disease and on identifying an effective therapeutic approach. The aim of this review is to describe the experimental studies that have begun to open the way towards an understanding of the complex process of fibrosis.

Key words:
Pulmonary fibrosis
Experimental studies
Interstitial lung disease

Las enfermedades pulmonares intersticiales difusas son un grupo de enfermedades respiratorias con múltiples incógnitas por resolver. En los últimos años se ha asistido a un gran avance en la clasificación para el diagnóstico correcto de cada una de ellas, con lo que se han sentado las bases indispensables para el estudio del proceso fisiopatológico en cada entidad. Sin embargo, resultan desconocidos tanto la causa desencadenante como los mecanismos exactos que llevan a la alteración irreversible del parénquima. Dentro de las enfermedades pulmonares intersticiales difusas, la más frecuente y de peor pronóstico es la fibrosis pulmonar idiopática. Los tratamientos actuales son empíricos, con respuesta aleatoria, e incapaces de mejorar la supervivencia. Por este motivo la mayoría de los estudios básicos se han centrado en buscar respuestas sobre su fisiopatología y un abordaje terapéutico efectivo. El objetivo de esta revisión es dar a conocer los estudios experimentales que han empezado a abrir caminos hacia la comprensión del complejo proceso fibrótico.

Palabras clave:
Fibrosis pulmonar
Estudio experimental
Enfermedad pulmonar intersticial
Full text is only aviable in PDF
REFERENCES
[1]
American Thoracic Society/European Respiratory Society.
International multidisciplinary consensus classification of the idiopathic interstitial pneumonias.
Am J Respir Crit Care Med, 165 (2002), pp. 227-304
[2]
A Xaubet, J Ancochea, R Blanquer, C Montero, F Morell, E Rodríguez-Becerra, et al.
Diagnóstico y tratamiento de las enfermedades pulmonares intersticiales difusas.
Arch Bronconeumol, 39 (2003), pp. 580-600
[3]
M Selman, TE King, A Pardo.
Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy.
Ann Intern Med, 134 (2001), pp. 136-151
[4]
SH Phan, RS Thrall, PA Ward.
Bleomycin-induced pulmonary in rats, biochemical demonstration of increased rate of collagen synthesis.
Am Rev Respir Dis, 121 (1980), pp. 501-506
[5]
F Chua, J Gauldie, GH Laurent.
Pulmonary fibrosis: searching for model answers.
Am J Respir Cell Mol Biol, 33 (2005), pp. 9-13
[6]
JM Antonini, K Starks, JR Roberst, L Millecchia, HM Yang, KM Rao.
Changes in F-actin organization induced by hard metal particle exposure in rat pulmonary epithelial cells using laser scanning confocal microscopy.
In Vitr Mol Toxicol, 13 (2000), pp. 5-16
[7]
RW Fleischman, JR Baker, GR Thompson, UH Schaeppi, VR Illievski, DA Cooney, et al.
Bleomycin-induced interstitial pneumonia in dogs.
Thorax, 26 (1971), pp. 675-682
[8]
T Ebihara, N Venkatesan, R Tanaka, MS Ludwig.
Changes in extracellular matrix and tissue viscoelasticity in bleomycin-induced lung fibrosis. Temporal aspects.
Am J Respir Crit Care Med, 162 (2000), pp. 1569-1576
[9]
M Gharaee-Kermani, M Ullenbruch, SH Phan.
Animal models of pulmonary fibrosis.
Methods Mol Med, 117 (2005), pp. 251-259
[10]
J Usuki, Y Fukuda.
Evolution of three patterns of intra-alveolar fibrosis produced by bleomycin in rats.
Pathol Int, 45 (1995), pp. 552-564
[11]
K Zhang, KC Flanders, SH Phan.
Cellular localization of transforming growth factor-beta expression in bleomycin-induced pulmonary fibrosis.
Am J Pathol, 147 (1995), pp. 352-361
[12]
JS Munger, X Huang, H Kawadatsu, MJ Griffiths, SL Dalton, J Wu, et al.
The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis.
Cell, 96 (1999), pp. 319-328
[13]
F Huaux, T Liu, B McGarry, M Ullenbruch, SH Phan.
Dual roles of IL-4 in lung injury and fibrosis.
J Immunol, 170 (2003), pp. 2083-2092
[14]
SH Park, D Saleh, A Giaid, RP Michel.
Increased endothelin-1 in bleomycin-induced pulmonary fibrosis and the effect of an endothelin receptor antagonist.
Am J Respir Crit Care Med, 156 (1997), pp. 600-608
[15]
A Serrano-Mollar, D Closa, J Cortijo, EJ Morcillo, N Prats, M Gironella, et al.
P-selectin upregulation in bleomycin induced lung injury in rats: effect of N-acetyl-L-cysteine.
Thorax, 57 (2002), pp. 629-634
[16]
M Kolb, PJ Margetts, T Galt, PJ Sime, Z Xing, M Schmidt, et al.
Transient transgene expression of decorin in the lung reduces the fibrotic response to bleomycin.
Am J Respir Crit Care Med, 163 (2001), pp. 770-777
[17]
M Molina-Molina, A Serrano-Mollar, O Bulbena, L Fernández-Zabalegui, D Closa, A Marín-Arguedas, et al.
Losartan attenuates bleomycin induced lung fibrosis by increasing prostaglandin E2 synthesis.
Thorax, 61 (2006), pp. 604-610
[18]
CK Haston, M Wang, RE Dejournett, X Zhou, D Ni, X Gu, et al.
Bleomycin hydrolase and a genetic locus within the MHC affect risk for pulmonary fibrosis in mice.
Hum Molt Genet, 11 (2002), pp. 1855-1863
[19]
N Hagimoto, K Kuwano, H Miyazaki, R Kunitake, M Fujita, M Kawasaki, et al.
Induction of apoptosis and pulmonary fibrosis in mice in response to ligation of Fas antigen.
Am J Respir Cell Mol Biol, 17 (1997), pp. 272-278
[20]
X Li, H Zhang, V Soledad-Conrad, V Soledad-Conrad, J Zhuang, BD Uhal.
Bleomycin-induced apoptosis of alveolar epithelial cells requires angiotensin synthesis de novo.
Am J Physiol Lung Cell Mol Physiol, 284 (2003), pp. L501-L5L7
[21]
RJ Phillips, MD Burdick, K Hong, MA Lutz, LA Murray, YY Xue, et al.
Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis.
J Clin Invest, 114 (2004), pp. 438-446
[22]
JH Harrison Jr, JS Lazo.
High dose continuous infusion of bleomycin in mice: a new model for drug-induced pulmonary fibrosis. J.
Pharmacol Exp Ther, 243 (1987), pp. 1185-1194
[23]
BD Uhal, R Wang, J Laukka, J Zhuang, V Soledad-Conrad, G Filippatos.
Inhibition of amiodarone-induced lung fibrosis but not alveolitis by angiotensin system antagonists.
Pharmacol Toxicol, 92 (2003), pp. 81-87
[24]
MD Taylor, JR Roberts, AF Hubbs, MJ Reasor, JM Antonini.
Quantitative image analysis of drug-induced lung fibrosis using laser scanning confocal microscopy.
Toxicol Sci, 67 (2002), pp. 295-302
[25]
JW Card, WJ Racz, JF Brien, SB Margolin, TE Massey.
Differential effects of pirfenidone on acute pulmonary injury and ensuing fibrosis in the hamster model of amiodarone-induced pulmonary toxicity.
Toxicol Sci, 75 (2003), pp. 169-180
[26]
V Barbarin, M Arras, P Misson, M Delos, B McGarry, SH Phan, et al.
Characterization of the effect of interleukin-10 on silica-induced lung fibrosis in mice.
Am J Respir Cell Mol Biol, 31 (2004), pp. 78-85
[27]
PG Coin, AR Osornio-Vargas, VL Roggli, AR Brody.
Pulmonary fibrogenesis after three consecutive inhalation exposures to chrysotile asbestos.
Am J Respir Crit Care Med, 154 (1996), pp. 1511-1519
[28]
J Pauluhn, M Baumann, C Hirth-Dietrich, M Rosenbruch.
Rat model of lung fibrosis: comparison of functional, biochemical, and histopathological changes 4 months after single irradiation of the right hemithorax.
Toxicology, 161 (2001), pp. 153-163
[29]
A Abdollahi, M Li, G Ping, C Plathow, S Domhan, F Kiessling, et al.
Inhibition of platelet-derived growth factor signaling attenuates pulmonary fibrosis.
J Exp Med, 201 (2005), pp. 925-935
[30]
M Carpenter, MW Epperly, A Agarwal, S Nie, L Hricisak, Y Niu, et al.
Inhalation delivery of manganese superoxide dismutaseplasmid/liposomes protects the murine lung from irradiation damage.
Gene Ther, 12 (2005), pp. 685-693
[31]
GR Budinger, GM Mutlu, J Eisenbart, AC Fuller, AA Bellmeyer, CM Baker, et al.
Proapoptotic Bid is required for pulmonary fibrosis.
Proc Natl Acad Sci U S A, 103 (2006), pp. 4604-4609
[32]
JC Bonner, AB Rice, JL Ingram, CR Moomaur, A Nyska, A Bradbury, et al.
Susceptibility of cyclooxygenase-2-deficient mice to pulmonary fibrogenesis.
Am J Pathol, 161 (2002), pp. 459-470
[33]
H Miyazaki, K Kuwano, K Yoshida, T Maeyama, M Yoshimi, M Fujita, et al.
The perforin mediated apoptotic pathway in lung injury and fibrosis.
J Clin Pathol, 57 (2004), pp. 1292-1298
[34]
M Peters-Golden, M Bailie, T Marshall, C Wilke, SH Phan, GB Toews, et al.
Protection from pulmonary fibrosis in leukotriene-deficient mice.
Am J Respir Crit Care Med, 165 (2002), pp. 229-235
[35]
JY Liu, AR Brody.
Increased TGF-beta 1 in the lungs of asbestos-exposed rats and mice: reduced expression in TNF-alpha receptor knockout mice.
J Environ Pathol Toxicol Oncol, 20 (2001), pp. 97-108
[36]
KT Rim, KK Park, JH Sung, YH Chung, JH Han, KS Cho, et al.
Gene-expression profiling using suppression-subtractive hybridization and cDNA microarray in rat mononuclear cells in response to welding-fume exposure.
Toxicol Ind Health, 20 (2004), pp. 77-88
[37]
R Blundell, N Kaminski, D Harrison.
Increase in p21 expression independent of the p53 pathway in bleomycin-induced lung fibrosis.
Exp Mol Pathol, 77 (2004), pp. 231-237
[38]
I Inoshima, K Kuwano, N Hamada, N Hagimoto, M Yoshimi, T Maeyama, et al.
Anti-monocyte chemoattractant protein-1 gene therapy attenuates pulmonary fibrosis in mice.
Am J Physiol Lung Cell Mol Physiol, 286 (2004), pp. L1038-L1L44
[39]
NB Dave, N Kaminski.
Analysis of microarray experiments for pulmonary fibrosis.
Methods Mol Med, 117 (2005), pp. 333-358
[40]
N Kijiyama, H Ueno, I Sugimoto, Y Sasaguri, K Yatera, M Kido, et al.
Intratracheal gene transfer of tissue factor pathway inhibitor attenuates pulmonary fibrosis.
Biochem Biophys Res Commun, 339 (2006), pp. 1113-1119
[41]
J Kaminski, JD Allard, F Pittet, F Zuo, MJD Griffiths, D Morris, et al.
Global analysis of gene expression in pulmonary fibrosis reveals distinct programs regulating lung inflammation and fibrosis.
Proc Natl Acad Sci U S A, 97 (2000), pp. 1778-1783
[42]
EA Renzoni, DJ Abraham, S Howat, X Shi-Wen, P Sestini, G Bou-Gharios, et al.
Gene expression profiling reveals novel TGF, targets in adult lung fibroblasts.
Respir Res, 5 (2004), pp. 1-12
[43]
M Selman, A Pardo, L Barrera, A Estrada, SR Watson, K Wilson, et al.
Gene expression profiles distinguish idiopathic pulmonary fibrosis from hypersensitivity pneumonitis.
Am J Respir Crit Care Med, 173 (2006), pp. 188-198
[44]
M Arras, J Louahed, V Simoen, V Barbarin, P Misson, S van den Brule, et al.
B lymphocytes are critical for lung fibrosis control and prostaglandin E2 regulation in IL-9 transgenic mice.
Am J Respir Cell Mol Biol, 34 (2006), pp. 573-580
[45]
A Xaubet, A Marín-Arguedas, S Lario, J Ancochea, F Morell, J Ruiz-Manzano, et al.
Transforming growth factor-beta1 gene polymorphisms are associated with disease progression in idiopathic pulmonary fibrosis.
Am J Respir Crit Care Med, 168 (2003), pp. 431-435
[46]
K Zhang, SH Phan.
Cytokines and pulmonary fibrosis.
Biol Signals, 5 (1996), pp. 232-239
[47]
X Li, H Rayford, BD Uhal.
Essential roles for angiotensin receptor AT1a in bleomycin-induced apoptosis and lung fibrosis in mice.
Am J Pathol, 163 (2003), pp. 2523-2530
[48]
YD Xu, J Hua, A Mui, R O'Connor, G Grotendorst, N Khalil.
Release of biologically active TGF-beta1 by alveolar epithelial cells results in pulmonary fibrosis.
Am J Physiol Lung Cell Mol Physiol, 285 (2003), pp. L527-LL39
[49]
RP Marshall, P Gohlke, RC Chambers, DC Howell, SE Bottoms, T Unger, et al.
Angiotensin II and the fibroproliferative response to acute lung injury.
Am J Physiol Lung Cell Mol Physiol, 286 (2004), pp. L156-LL64
[50]
JE Koloksick, GB Toews, C Jakubzick, C Hogaboam, TA Moore, A McKenzie, et al.
Protection from fluorescein isothiocyanate-induced fibrosis in IL-13-deficient, but not IL-4-deficient, mice results from impaired collagen synthesis by fibroblasts.
J Immunol, 172 (2004), pp. 4068-4076
[51]
W Matsuyama, M Watanabe, Y Shirahama, H Mitsuyama, I Higashimoto, M Osame, et al.
Discoidin domain receptor 1 contributes to the survival of lung fibroblast in idiopathic pulmonary fibrosis.
Am J Pathol, 168 (2006), pp. 866-877
[52]
C Ramos, M Montaño, J García-Álvarez, V Ruiz, BD Uhal, M Selman, et al.
Fibroblasts from idiopathic pulmonary fibrosis and normal lungs differ in growth rate, apoptosis, and tissue inhibitor of metalloproteinases expression.
Am J Respir Cell Mol Biol, 24 (2001), pp. 591-598
[53]
X Liu, SQ Sun, RS Ostrom.
Fibrotic lung fibroblasts show blunted inhibition by cAMP due to deficient cAMP response element-binding protein phosphorylation.
J Pharmacol Exp Ther, 315 (2005), pp. 678-687
[54]
H Kasai, JT Allen, RM Mason, T Kamimura, Z Zhang.
TGF-,1 induces human alveolar epithelial to mesenchymal cell transition (EMT).
Respir Res, 6 (2005), pp. 56
[55]
R Wang, G Alam, A Zagariya, C Gidea, H Pinillos, O Lalude, et al.
Apoptosis of lung epithelial cells in response to TNF-· requires angiotensin generation de novo.
[56]
FJ Lichtenberger, C Montague, M Hunter, G Frambach, CB Marsh.
NAC and DTT promote TGF-beta1 monomer formation: demonstration of competitive binding.
J Inflamm (Lond), 11 (2006), pp. 7
[57]
T Ishida, H Tsukada, T Hasegawa, H Yoshizawa, F Gejyo.
Matrix metalloproteinase-1 activation via plasmin generated on alveolar epithelial cell surfaces.
[58]
IH Adamson, L Young, DH Bowden.
Relationship of alveolar epithelial injury and repair to the induction of pulmonary fibrosis.
Am J Pathol, 130 (1988), pp. 377-383
[59]
Q Ye, B Chen, Z Tong, S Nakamura, R Sarria, U Costabel, et al.
Thalidomide partially reduces IL-18, IL-8 and TNF-{alpha} release from alveolar macrophages in interstitial lung disease.
Eur Respir J, 28 (2006), pp. 824-831
[60]
AL Mora, E Torres-González, M Rojas, C Corredor, J Ritzenthaler, J Xu, et al.
Activation of alveolar macrophages via the alternative pathway in herpesvirus-induced lung fibrosis.
Am J Respir Cell Mol Biol, 35 (2006), pp. 466-473
[61]
J Portnoy, T Pan, CA Dinarello, JM Shannon, JY Westcott, L Zhang, et al.
Alveolar type II cells inhibit fibroblast proliferation: role of IL-1·.
Am J Physiol Lung Cell Mol Physiol, 290 (2006), pp. L307-LL16
[62]
Y Morishima, A Nomura, Y Uchida, T Noguchi, T Sakamoto, Y Ishii, et al.
Triggering the induction of myofibroblast and fibrogenesis by airway epithelial shedding.
Am J Respir Cell Mol Biol, 24 (2001), pp. 1-11
[63]
A Prasse, DV Pechkovsky, GB Toews, W Jungraithmayr, F Kollert, T Goldmann, et al.
Vicious circle of alveolar macrophages and fibroblasts perpetuates pulmonary fibrosis via CCL18.
Am J Respir Crit Care Med, 173 (2006), pp. 781-792
[64]
X Li, R Shu, G Filippatos, BD Uhal.
Apoptosis in lung injury and remodeling.
J Appl Physiol, 97 (2004), pp. 1535-1542
[65]
M Molina-Molina, S Lario, P Luburich, J Ramírez, MT Carrión, A Xaubet.
Determinación en plasma del factor transformador del crecimiento, 1 en la fibrosis pulmonar idiopática.
Arch Bronconeumol, 42 (2006), pp. 380-383
[66]
J Gauldie.
Pro: inflammatory mechanisms are a minor component of the pathogenesis of idiopathic pulmonary fibrosis.
Am J Respir Crit Care Med, 165 (2002), pp. 1205-1206
[67]
RM Strieter.
Con: inflammatory mechanisms are not a minor component of the pathogenesis of idiopathic pulmonary fibrosis.
Am J Respir Crit Care Med, 165 (2002), pp. 1206-1207
[68]
F Calabrese, C Giacometti, F Rea, M Loy, M Valente.
Idiopathic interstitial pneumonias: primum movens: epithelial, endothelial or whatever.
Sarcoidosis Vasc Diffuse Lung Dis, 22 (2005), pp. S15-S23
[69]
MP Keane, RM Strieter, JA Belperio.
Mechanisms and mediators of pulmonary fibrosis.
Crit Rev Immunol, 25 (2005), pp. 429-463
[70]
ER Parra, YR David, LR Da Costa, A Ab'Saber, R Sousa, RA Kairalla, et al.
Heterogeneous remodeling of lung vessels in idiopathic pulmonary fibrosis.
[71]
MP Keane, JA Belperio, MD Burdick, JP Lynch, MC Fishbein, RM Strieter.
ENA-78 is an important angiogenic factor in idiopathic pulmonary fibrosis.
Am J Respir Crit Care Med, 164 (2001), pp. 2239-2242
[72]
MP Keane, DA Arenberg, JP Lynch, RI Whyte, MD Lannettoni, MD Burdick, et al.
The CXC chemokines, IL-8 and IP-10, regulate angiogenic activity in idiopathic pulmonary fibrosis.
J Immunol, 159 (1997), pp. 1437-1444
[73]
VS Taskar, DB Coultas.
Is idiopathic pulmonary fibrosis an environmental disease?.
Proc Am Thorac Soc, 3 (2006), pp. 293-298
[74]
P Doran, JJ Egan.
Herpesviruses: a cofactor in the pathogenesis of idiopathic pulmonary fibrosis?.
Am J Physiol Lung Cell Mol Physiol, 289 (2005), pp. L709-LL10
[75]
G Raghu, TD Freudenberger, S Yang, JR Curtis, C Spada, JK Sillery, et al.
High prevalence of abnormal acid gastro-oesophageal reflux in idiopathic pulmonary fibrosis.
Eur Respir J, 27 (2006), pp. 136-142
[76]
HL Lee, JH Ryu, MH Wittmer, TE Harman, JF Lymp, HD Tazelaar, et al.
Familial idiopathic pulmonary fibrosis: clinical features and outcome.
Chest, 127 (2005), pp. 2034-2041
[77]
U Hodgson, V Pulkkinen, M Dixon, M Peyrard-Janvid, M Rehn, P Lahermo, et al.
ELMOD2 is a candidate gene for familial idiopathic pulmonary fibrosis.
Am J Hum Genet, 79 (2006), pp. 149-154
[78]
LM Nogee.
Genetics of pediatric interstitial lung disease.
Curr Opin Pediatr, 18 (2006), pp. 287-292
[79]
J Elford, P Fitch, E Kaminski, C McGavin, IP Wells.
Five cases of sarcoidosis in one family: a new immunological link?.
Thorax, 55 (2000), pp. 343-344
[80]
A Kruit, JC Grutters, HJ Ruven, CH van Moorsel, R Weiskirchen, S Mengsteab, et al.
Transforming growth factor-beta gene polymorphisms in sarcoidosis patients with and without fibrosis.
Chest, 129 (2006), pp. 1584-1591
[81]
R Falfan-Valencia, A Camarena, A Juárez, C Becerril, M Montano, J Cisneros, et al.
Major histocompatibility complex and alveolar epithelial apoptosis in idiopathic pulmonary fibrosis.
Hum Genet, 118 (2005), pp. 235-244
[82]
M Vasakova, I Striz, A Slavcev, S Jandova, L Kolesar, J Sulc.
Th1/Th2 cytokine gene polymorphisms in patients with idiopathic pulmonary fibrosis.
Tissue Antigens, 67 (2006), pp. 229-232
[83]
WE Lawson, SW Gran, V Ambrosini, KE Womble, EP Dawson, KB Lane, et al.
Genetic mutations in surfactant protein C are a rare cause of sporadic cases of IPF.
Thorax, 59 (2004), pp. 977-980
[84]
MM Wurfel, G Raghu.
Genetics of pulmonary fibrosis.
Semin Respir Crit Care Med, 23 (2002), pp. 177-187
[85]
J Ancochea, E Antón, A Casanova.
New therapeutic strategies in idiopathic pulmonary fibrosis.
Arch Bronconeumol, 40 (2004), pp. 16-22
Copyright © 2007. Sociedad Española de Neumología y Cirugía Torácica (SEPAR)
Archivos de Bronconeumología
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?