Journal Information
Vol. 43. Issue 12.
Pages 674-679 (January 2007)
Share
Share
Download PDF
More article options
Vol. 43. Issue 12.
Pages 674-679 (January 2007)
TECHNIQUES AND PROCEDURES
Full text access
Design of a Lung Simulator for Teaching Lung Mechanics in Mechanical Ventilation
Visits
7671
Sarah Heili-Frades
Corresponding author
sarah.heili@gmail.com

Correspondence: Dra. S. Heili-Frades. Servicio de Neumología. Fundación Jiménez Díaz-CAPIO. Avda. Reyes Católicos,2.28040 Madrid. España
, Germán Peces-Barba, María Jesús Rodríguez-Nieto
Servicio de Neumología. Fundación Jiménez Díaz-CAPIO, Madrid, Spain
This item has received
Article information
Abstract
Bibliography
Download PDF
Statistics

Over the last 10 years, noninvasive ventilation has become a treatment option for respiratory insufficiency in pulmonology services. The technique is currently included in pulmonology teaching programs. Physicians and nurses should understand the devices they use and the interaction between the patient and the ventilator in terms of respiratory mechanics, adaptation, and synchronization. We present a readily assembled lung simulator for teaching purposes that is reproducible and interactive. Based on a bag-in-box system, this model allows the concepts of respiratory mechanics in mechanical ventilation to be taught simply and graphically in that it reproduces the patterns of restriction, obstruction, and the presence of leaks. It is possible to demonstrate how each ventilation parameter acts and the mechanical response elicited. It can also readily simulate asynchrony and demonstrate how this problem can be corrected.

Key words:
Noninvasive ventilation
Lung simulator
Patient ventilator-interaction
Asynchrony
Leaks

Desde la última década la ventilación no invasiva se ha incorporado al tratamiento de la insuficiencia respiratoria en los servicios de neumología, y actualmente forma parte del plan de formación de esta especialidad. Médicos y enfermeras deben conocer los equipos con los que trabajan y entender la interacción que se produce entre el paciente y el ventilador en términos de mecánica respiratoria y de adaptación y sincronización. Presentamos un modelo de simulador de pulmón de fácil montaje, reproducible e interactivo, que permite alcanzar estos objetivos. Basado en un sistema de bagin-box, este modelo permite aprender de forma sencilla y gráfica la mayoría de los conceptos de la mecánica respiratoria en ventilación mecánica, pues reproduce patrones de restricción, obstrucción o presencia de fugas. Puede comprobarse cómo actúa cada parámetro del ventilador y la respuesta mecánica que genera, y permite simular numerosas asincronías, así como el modo correspondiente de corregirlas.

Palabras clave:
Ventilación no invasiva
Simulador de pulmón
Interacción paciente-ventilador
Asincronías
Fugas
Full text is only available in PDF
REFERENCES
[1]
M Moretti, C Cilione, A Tampieri, C Fracchia, A Marchioni, S Nava.
Incidence and causes of non-invasive mechanical ventilation failure after initial success.
Thorax, 55 (2000), pp. 819-825
[2]
L Brochard, D Isabey, J Piqué, et al.
Reversal of acute exacerbations of COPD by inspiratory assistance with a face mask.
N Engl J Med, 323 (1990), pp. 1523-1530
[3]
MW Elliott, M Latham.
Noninvasive ventilation on a general ward.
Eur Respir Mon, 3 (1998), pp. 348-363
[4]
A Ortega-González, G Peces-Barba, I Fernández-Ormaechea, R Chumbi-Flores, N Cubero de Frutos, N González Mangado.
Evolución comparativa con ventilación no invasiva de pacientes con EPOC, síndrome de hipoventilación-obesidad e insuficiencia cardíaca congestiva ingresados en una unidad de monitorización respiratoria.
Arch Bronconeumol, 42 (2006), pp. 423-429
[5]
Y Dueñas-Pareja, S López-Martín, J García-García, R Melchor, MJ Rodríguez-Nieto, N González-Mangado, et al.
Ventilación no invasiva en pacientes con encefalopatía hipercápnica severa en una sala de hospitalización convencional.
Arch Bronconeumol, 38 (2002), pp. 372-375
[6]
T Dorman, PB Angood, DC Angus, et al.
Guidelines for critical care medicine training and continuing medical education.
Crit Care Med, 32 (2004), pp. 263-272
[7]
V Maheshwari, D Paioli, R Rothaar, NS Hill.
Utilization of noninvasive ventilation in acute care hospitals: a regional survey.
Chest, 129 (2006), pp. 1226-1233
[8]
JY Neme, AM Gutiérrez, MC Santos, M Beron, C Ekroth, JP Arcos, et al.
Efectos fisiológicos de la ventilación no invasiva en pacientes con EPOC.
Arch Bronconeumol, 43 (2007), pp. 150-155
[9]
IM Stell, G Paul, KC Lee, J Ponte, J Moxham.
Noninvasive ventilator triggering in chronic obstructive pulmonary disease: a test lung comparison.
Am J Respir Crit Care Med, 164 (2001), pp. 2092-2097
[10]
S Nava, N Ambrosino, C Bruschi, M Confalonieri, C Rampulla.
Physiological effects of flow and pressure triggering during noninvasive mechanical ventilation in patients with chronic obstructive pulmonary disease.
Thorax, 52 (1997), pp. 249-254
[11]
G Peces-Barba, S Heili.
Ventilación no invasiva en la insuficiencia respiratoria aguda. ¿Cómo, dónde y cuándo?.
Rev Patol Respir, 9 (2006), pp. 117-123
[12]
R Fernández, S Benito, Ll Blanch, A Net.
Intrinsic PEEP: a cause of inspiratory muscle ineffectivity.
Intensive Care Med, 15 (1988), pp. 51-52
[13]
E Pertusini, F Lellouche, F Catani, S Heili, S Taillé, P Rodríguez, et al.
Patient-ventilator asynchronies during NIV: does level of pressure support matter?.
Intensive Care Med, 30 (2004), pp. S65
[14]
AB Baker, JE Colliss, RW Cowie.
Effects of varying inspiratory flow waveform and time in intermittent positive pressure ventilation. II: various physiological variables.
Br J Anaesth, 49 (1977), pp. 1221-1234
[15]
G Bonmarchand, V Chevron, C Chopin, et al.
Increased initial flow rate reduces inspiratory work of breathing during pressure support ventilation in patients with exacerbation of chronic obstructive pulmonary disease.
Intensive Care Med, 22 (1996), pp. 1147-1154
[16]
E Calderini, M Confalonieri, PG Puccio, N Francavilla, L Stella, C Gregoretti.
Patient-ventilator asynchrony during noninvasive ventilation: the role of expiratory trigger.
Intensive Care Med, 25 (1999), pp. 662-667
[17]
H Tokioka, T Tanaka, T Ishizu, T Fukushima, T Iwaki, Y Nakamura, et al.
The effect of breath termination criterion on breathing patterns and the work of breathing during pressure support ventilation.
Anesth Analg, 92 (2001), pp. 161-165
[18]
AW Thille, P Rodríguez, B Cabello, F Lellouche, L Brochard.
Patient-ventilator asynchrony during assisted mechanical ventilation.
Intensive Care Med, 32 (2006), pp. 1515-1522
[19]
D Tassaux, JB Michotte, M Gainnier, P Gratadour, S Fonseca, P Jolliet.
Expiratory trigger setting in pressure support ventilation: from mathematical model to bedsidecrit.
Care Med, 32 (2004), pp. 1844-1850
[20]
D Tassaux, M Gainnier, A Battisti, P Jolliet.
Impact of expiratory trigger setting on delayed cycling and inspiratory muscle.
Am J Respir Crit Care Med, 172 (2005), pp. 1283-1289
Copyright © 2007. Sociedad Española de Neumología y Cirugía Torácica (SEPAR)
Archivos de Bronconeumología
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?