Journal Information
Vol. 41. Issue 10.
Pages 547-552 (October 2005)
Share
Share
Download PDF
More article options
Vol. 41. Issue 10.
Pages 547-552 (October 2005)
Original Articles
Full text access
Changes in Spirometric Parameters and Arterial Oxygen Saturation During a Mountain Ascent to Over 3000 Meters
Visits
4861
L. Compte-Torreroa,
Corresponding author
compte_lui@gva.es

Correspondence: Dr. L. Compte-Torrero. Servicio de Neumología. Hospital Universitario La Fe. Avda. de Campanar, 21. 46009 Valencia. España
, J. Botella de Magliab, A. de Diego-Damiáa, L. Gómez-Pérezb, P. Ramírez-Galleymoreb, M. Perpiñá-Torderaa
a Servicio de Neumología, Hospital Universitario La Fe, Valencia, Spain
b Unidad de Medicina Intensiva, Hospital Universitario La Fe, Valencia, Spain
This item has received
Article information
Abstract
Bibliography
Download PDF
Statistics
Objective

TO ascertain whether climbing a mountain over 3000 meters high produces any alterations in ventilation, whether such alterations are modified by acclimatization, and whether they correlate with changes in arterial oxygen saturation (SaO2) or the development of acute mountain sickness (AMS).

Subjects and methods

The following parameters were measured in 8 unacclimatized mountaineers who climbed Aneto (3404 m) and spent 3 days at the summit: forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), airway response to inhaled terbutaline, SaO2, and the symptoms of AMS.

Results

At the summit, mean (SD) FEV1 declined by 12.3% (5.7%) and mean FVC by 7.6% (6.7%) while the ratio of FEV1 to FVC remained normal. The means for both parameters were higher on the following day. No airway response to bronchodilator treatment was observed. The restriction disappeared entirely on descent. At the peak, SaO2 increased progressively as the climbers became acclimatized. During the ascent, FEV1 correlated with SaO2 (r = 0.79). One participant who suffered from AMS had a ratio of FEV1 to FVC less than 70% and the worst SaO2 during the 3 days on the summit. Obstruction preceded the AMS symptoms, did not respond to bronchodilator treatment, and disappeared when the climber descended.

Conclusions

The mountaineers who climbed over 3000 meters presented restriction that correlated with hypoxemia. This restriction did not respond to bronchodilator treatment, improved with acclimatization, and disappeared on descent. One person with AMS presented obstruction that did not respond to terbutaline and disappeared on descent.

Key Words:
Spirometry
Arterial oxygen saturation
Acute mountain sickness
Acclimatization
Objetivo

Averiguar si en la ascensión a una montaña de más de 3.000 m se produce alguna alteración ventilatoria, si ésta se modifica por la aclimatación y si se relaciona con los cambios en la saturación arterial de oxígeno (SaO2) o con la aparición de síntomas de mal de montaña agudo (MAM).

Sujetos y métodos

En 8 montañeros no aclimatados que ascendieron a la cumbre del Aneto (3.404 m) y permanecieron 3 días en ella medimos: la capacidad vital forzada (FVC), el volumen espiratorio forzado en el primer segundo (FEV1), la respuesta a la inhalación de terbutalina, la SaO2 y los síntomas de MAM.

Resultados

Al Ilegar a la cumbre disminuyeron el FEV1 (12,3 ± 5,7%) y la FVC (7,6 ± 6,7%) con la relación FEV1/FVC% normal. Al día siguiente aumentaron ambos parámetros. No hubo respuesta al tratamiento broncodilatador. La restricción se corrigió totalmente al descender. La SaO2 en la cumbre aumentó progresivamente con la aclimatación. Durante la ascensión el FEV1 se correlacionó con la SaO2 (r = 0,79). Un participante con MAM presentó FEV1/FVC menor del 70% y la peor SaO2 durante la estancia en la cima. Esta obstrucción precedió a los síntomas, no cedió con tratamiento broncodilatador y se corrigió con el descenso.

Conclusiones

Los montañeros que ascienden a montañas de más de 3.000 m presentan una restricción que se correlaciona con la hipoxemia, no mejora con el tratamiento broncodilatador, se alivia con la aclimatación y desaparece con el descenso. Un sujeto con MAM sufrió una obstrucción que no respondió a la terbutalina y desapareció con el descenso.

Palabras clave:
Espirometría
Saturación arterial de oxígeno
Mal agudo de montaña
Aclimatación
Full text is only aviable in PDF
REFERENCES
[1]
L Compte Torrero, RM Real Soriano, J Botella de Maglia, A de Diego Damiá, V Macián Gisbert, M Perpiñá Tordera.
Cambios respiratorios durante la ascensión a una montaña de más de 8.000 metros.
Med Clin (Barc), 118 (2002), pp. 47-52
[2]
X Garaioa Aizkorbe.
Adaptación cardiovascular al esfuerzo durante la ascensión al Himalaya.
Arch Med Depor, 1 (1985), pp. 43-58
[3]
AJ Pollard, PW Barry, NP Mason, et al.
Hypoxia, hypocapnia and spirometry at altitude.
Clin Sci (Lond), 92 (1997), pp. 593-598
[4]
RL Ge, Y Matsuzawa, M Takeoka, K Kubo, M Sekiguchi, T Kobayasi.
Low pulmonary diffusing capacity in subjects with acute mountain sickness.
Chest, 111 (1997), pp. 58-64
[5]
AJ Pollard, NP Mason, PW Barry, et al.
Effect of altitude on spirometric parameters and the performance of peak flow meters.
Thorax, 51 (1996), pp. 175-178
[6]
CH Welsh, PD Wagner, JT Reeves, et al.
Operation Everest II: spirometric and radiographic changes in acclimatized humans at simulated high altitudes.
Am Rev Repir Dis, 147 (1993), pp. 1239-1244
[7]
MA Selland, TJ Stelzner, T Stevens, RS Mazzeo, RE McCullough, JT Reeves.
Pulmonary function and hypoxic ventilatory response in subjects susceptible to high-altitude pulmonary edema.
Chest, 103 (1993), pp. 111-116
[8]
F Ulvedal, TE Morgan, RG Gutler, BE Welch.
Ventilatory capacity during prolonged exposure to simulated altitude without hypoxia.
J Appl Physiol, 8 (1963), pp. 904-908
[9]
SM Tenney, H Rahn, RC Stroud, JC Mithoefer.
Adaptation to high altitude: changes in lung volumes during the first seven days at Mt Evans, Colorado.
J Appl Physiol, 5 (1953), pp. 607-613
[10]
H Rahn, D Hammond.
Vital capacity at reduced barometric pressure.
J Appl Physiol, 4 (1952), pp. 715-724
[11]
JL Shields, JP Hannon, CW Harris, WS Platner.
Effects of altitude acclimatisation on pulmonary function in women.
J Appl Physiol, 25 (1968), pp. 606-609
[12]
NP Mason, PW Barry, AJ Pollard, et al.
Serial changes in spirometry during an ascent to 5300 m in the Nepalese Himalayas.
High Alt Med Biol, 1 (2000), pp. 185-195
[13]
F Hashimoto, B McWilliams, C Qualls.
Pulmonary ventilatory function decreases in proportion to increasing altitude.
Wilderness Environ Med, 8 (1997), pp. 214-217
[14]
JJ Jaeger, JT Sylvester, A Cymerman, JJ Berberich, JC Dennison, JT Maher.
Evidence of increased intrathoracic fluid volume in man at high altitude.
J Appl Physiol, 47 (1979), pp. 670-676
[15]
WW Wagner, LP Latham, RL Capen.
Capillary recruitment during airway hypoxia: role of pulmonary artery pressure.
J Appl Physiol, 47 (1979), pp. 383-387
[16]
SG Roy, JS Guleria, PK Khanna.
Haemodynamic studies in high altitude pulmonary oedema.
Br Heart J, 31 (1969), pp. 52-58
[17]
G Coates, G Gray, A Mansell, et al.
Changes in lung volume, lung density, and distribution of ventilation during hypobaric decompression.
J Appl Physiol, 46 (1979), pp. 752-755
[18]
TW Astin.
The relationship between arterial blood oxygen saturation, carbon dioxide tension and pH and airway resistance during 30% oxygen breathing in patients with chronic bronchitis and airway obstruction.
Am Rev Respir Dis, 102 (1970), pp. 382-387
[19]
DM Libby, WA Briscoe, TKC King.
Relief of hypoxia-related bronchoconstriction by breathing 30 per cent oxygen.
Am Rev Respir Dis, 123 (1981), pp. 171-175
[20]
J Sanchis, P Casan, J Castillo, N González, L Palenciano, J Roca.
Normativas para la espirometría forzada.
Recomendaciones SEPAR, pp. 1-18
[21]
J Roca, J Sanchis, A Agustí-Vidal, F Segarra, D Navajas, R Rodríguez-Roissin, et al.
Spirometric reference values from a Mediterranean population.
Bull Eur Physiopathol Resp, 22 (1986), pp. 217-224
[22]
L Compte, J Botella, R Domènech, A de Diego, M Perpiñá, V Macián.
Cambios espirométricos durante la ascensión y permanencia en la cumbre del Aneto.
Arch Bronconeumol, 34 (1998), pp. 140A
[23]
V Macián, L Compte, A de Diego, MA Martínez, D Ferrando, M Perpiñá.
Efecto de la altitud y la hipobaria sobre la estimación de volumen medido mediante un espirómetro portátil.
Arch Bronconeumol, 35 (1999), pp. 124A
[24]
J Botella de Maglia.
Mal de altura. Prevención y tratamiento, Desnivel, (2002),
[25]
PH Hackett.
The Lake Louise consensus on definition and quantification of altitude illness.
Hypoxia and mountain medicine, pp. 327-330
[26]
E Garrido Marín, J Botella de Maglia.
El mal de montaña.
Med Clin (Barc), 110 (1998), pp. 162-168
[27]
PH Hackett, RC Roach.
High altitude pulmonary edema.
J Wilderness Med, 1 (1990), pp. 3-26
[28]
M Kryger, F Aldrich, JT Reeves, RF Grover.
Diagnosis of airflow obstruction at high altitude.
Am Rev Respir Dis, 117 (1978), pp. 1055-1058
[29]
PS Thomas, RM Harding, JS Milledge.
Peak expiratory flow at altitude.
Thorax, 45 (1990), pp. 620-622
[30]
OF Pedersen, MR Miller, T Sigsgaard, M Tidley, RM Harding.
Portable peak flow meters: physical characteristics, influence of temperature, altitude, and humidity.
Eur Respir J, 7 (1994), pp. 991-997
[31]
P Bärtsch, M Maggiorini, M Ritter, C Noti, P Vock, O Oelz.
Prevention of high-altitude pulmonary edema by nifedipine.
N Engl J Med, 325 (1991), pp. 1284-1289
[32]
DS Miles, MH Cox, JP Bomze, TW Gotshall.
Acute recovery profile of lung volumes and function after running 5 miles.
J Sports Med Phys Fitness, 31 (1991), pp. 234-238
[33]
MB Maron, LH Hamilton, MG Maksud.
Alterations in pulmonary function consequent to competitive marathon running.
Med Sci Sports, 11 (1979), pp. 244-249
[34]
I Singh, PK Khanna, MC Srivastava, M Lal, SB Roy, CSV Subramanyan.
Acute mountain sickness.
N Engl J Med, 280 (1969), pp. 175-185
[35]
JD Anholm, CS Houston, TM Hyers.
The relationship between acute mountain sickness and pulmonary ventilation at 2,835 meters.
Chest, 75 (1975), pp. 33-36
[36]
L Borderías, S Rubio, J Martínez Ferrer, et al.
Mal agudo de montaña en alpinistas de élite durante las expediciones a alturas superiores a 6.500 metros.
Arch Bronconeumol, 33 (1997), pp. 111A
[37]
E Monsó, JM Bofill, X de Gracia.
Estudio del máximo flujo espiratorio forzado (MFEF) a 5.600 metros de altura.
Med Clin (Barc), 83 (1984), pp. 471
[38]
P Bärtsch, ER Swenson, A Paul, B Jülg, E Hohenhaus.
Hypoxic ventilatory response, ventilation, gas exchange, and fluid balance in acute mountain sickness.
High Alt Med Biol, 3 (2002), pp. 361-375
[39]
TM Hyers, CH Scoggin, DH Will, RF Grover, JT Reeves.
Accentuated hypoxemia at high altitude in subjects susceptible to high altitude pulmonary edema.
J Appl Physiol, 46 (1979), pp. 41-46
[40]
CK Grissom, RC Roach, FH Sarnquist, P Hackett.
Acetazolamide in the treatment of acute mountain sickness: clinical efficacy and effect on gas exchange.
Ann Intern Med, 116 (1992), pp. 461-465
[41]
JR Sutton, AC Bryan, GW Gray, et al.
Pulmonary gas exchange in acute mountain sickness.
Aviat Space Environ Med, 47 (1976), pp. 1032-1037
[42]
P Bärtsch, U Waber, A Haeberli, M Maggiorini, S Kriemler, O Oeltz.
Enhanced fibrin formation in high-altitude pulmonary edema.
J Appl Phisiol, 63 (1987), pp. 752-757
[43]
E Hohenhaus, F Niroomand, S Goerre, P Vock, O Oelz, P Bärtsch.
Nifedipine does not prevent acute mountain sickness.
Am J Respir Crit Care Med, 150 (1994), pp. 857-860
Copyright © 2005. Sociedad Española de Neumología y Cirugía Torácica (SEPAR)
Archivos de Bronconeumología
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?