Journal Information
Vol. 40. Issue 5.
Pages 209-217 (May 2004)
Share
Share
Download PDF
More article options
Vol. 40. Issue 5.
Pages 209-217 (May 2004)
Original Articles
Full text access
Analysis of Respiratory Muscle Structure and Tumor Necrosis and Insulin-Like Growth Factor Expression in Chronic Obstructive Pulmonary Disease: Are Samples Valid if Obtained During Thoracotomy Performed Because of Localized Pulmonary Neoplasia?
Visits
3913
C. Casadevalla, C. Coronella, J. Minguellab,c, L. Blancoa,d, M. Orozco-Levia,d, E. Barreiroa, J. Broquetasc,d, J. Geaa,d,e,
Corresponding author
jgea@imim.es

Correspondence: Dr. J. Gea. Servei de Pneumologia. IMIM-Hospital del Mar. Pg. Marítim, 27. 08003 Barcelona. España
a Unitat de Recerca en Múscul (URMA), IMIM-Hospital del Mar, Barcelona, Spain
b Secció de Cirurgia Toràcica, IMIM-Hospital del Mar, Barcelona, Spain
c Universitat Autònoma de Barcelona, Barcelona, Spain
d Servei de Pneumologia, IMIM-Hospital del Mar, Barcelona, Spain
e Universitat Pompeu Fabra, Barcelona, Spain
This item has received
Article information
Objective

Various methods have been used to obtain samples to study the structure of human respiratory muscles and the expression of diverse substances in them. Samples are most often obtained from autopsies, from muscle biopsies during thoracotomy performed because of a localized pulmonary lesion (TLL), and from ambulatory thoracoscopic biopsy in patients free of comorbidity (AT). The dis-advantage of the first 2 of these methods lies in the possibility of interference from factors related to the patient's death in the first case or from the disease that necessitated surgery in the second. Although AT is free from the disadvantages of the other 2 methods, it is impossible to obtain samples of the diaphragm—the principal respiratory muscle—with this procedure. The objective of this study was to analyze the fibrous structure of the external intercostal muscle of patients with chronic obstructive pulmonary disease and to quantify the expression of the principal inflammatory cytokine—tumor necrosis factor alpha (TNF-α)—and of insulin-like growth factor (IGF-1) in the same muscle, comparing the results obtained with TLL and AT samples.

Methods

Prospective and consecutive samples were taken of the external intercostal muscle (fifth space, anterior axillary line) in 15 patients with chronic obstructive pulmonary disease (mean [SD] age 66 [6] years; forced expiratory volume in 1 second 49% [9%] of predicted; PaO2 75 [9] mm Hg). Samples were taken during TLL (8 patients, all with pulmonary neoplasms but carefully selected in order to rule out systemic effects) or TA (7 patients). Patients with serious comorbidity were excluded from the second group. Samples were processed for structural analysis of fibers (immunohistochemical and enzymatic histochemical) and genetic expression of TNF-α and IGF-1 (real-time polymerase chain reaction).

Results

NO differences in the structure of fibers were found between the 2 groups. No differences were observed in the expression of TNF-α or IGF-1.

Conclusions

Using rigorous criteria, the TLL method appears to be suitable for studying the structural characteristics and expression of inflammatory cytokines and growth factors in the external intercostal muscle. Moreover, it can also be inferred that TLL is probably also useful for obtaining samples of the diaphragm, a muscle which cannot currently be sampled by any alternative method.

Key words:
Respiratory muscles
Fibers
TNF-α
Growth factor
Thoracotomy
Objetivo

LOS estudios estructurales y de expresión de diversas sustancias en músculos respiratorios de seres humanos se han servido de diversos modelos para la obtención de las muestras. Entre ellos destacan la toma de tejidos en autopsias, la biopsia muscular en el curso de una toracotomía por lesión pulmonar localizada (TLL) y la biopsia ambulatoria en sujetos sin comorbilidad (TA). Los 2 primeros modelos adolecen de las posibles interferencias de factores relacionados, respectivamente, con la muerte o la enfermedad que motiva el acto quirúrgico. La TA, aunque obvia los inconvenientes de los otros 2 modelos, no permite obtener muestras del diafragma, principal músculo respiratorio. El objetivo de este trabajo fue analizar la estructura fibrilar y expresión de la principal citocina inflamatoria -factor de necrosis tumoral alfa (TNF-α)- y del factor de crecimiento muscular insulina-like (IGF-1) en el músculo intercostal ex-terno de pacientes con enfermedad pulmonar obstructiva crónica, comparando los resultados obtenidos con los mode-los de TLL y TA.

Métodos

Se tomaron prospectiva y consecutivamente muestras del músculo intercostal externo (quinto espacio, línea axilar anterior) en 15 pacientes con enfermedad pulmonar obstructiva crónica (66 ± 6 años; volumen espiratorio forzado en el primer segundo del 49 ± 9% ref., presión arterial de oxígeno de 75 ± 9 mmHg). Las muestras se tomaron mediante TLL (8 pacientes, todos ellos con neoplasia pulmonar pero cuidadosamente seleccionados para descartar efec-tos sistémicos) o TA (7 pacientes), excluyéndose en el segundo caso la presencia de comorbilidad importante. Las muestras se procesaron para análisis estructural fibrilar (in-munohistoquímica e histoquímica enzimática) y de expresión génica de TNF-α e IGF-1 (reacción en cadena de la polimerasa en tiempo real).

Resultados

El análisis estructural de las fibras no mostró diferencias entre ambos grupos. Tampoco se observaron diferencias en la expresión de TNF-α o IGF-1.

Conclusions

Con criterios de selección rigurosos, el modelo de TLL parece adecuado para el estudio de las caracte-rísticas estructurales y de expresión de citocinas inflamato-rias y factores de crecimiento en el músculo intercostal externo. Puede además inferirse que probablemente la TLL también sea útil para esos objetivos en el caso del diafragma, para el que no existe una técnica alternativa en la actualidad.

Palabras clave:
Músculos respiratorios
Fibras
TNF-α
Factor de crecimiento
Toracotomía
Full text is only aviable in PDF
REFERENCES
[1]
M Miravitlles, C Murio, T Guerrero, R Gisbert.
Costs of chronic bronchitis and COPD: a 1-year follow-up study.
Chest, 123 (2003), pp. 784-791
[2]
T Montemayor, I Alfajeme, C Escudero, J Morera, L Sánchez Agudo.
Guías para el diagnóstico y tratamiento de la EPOC. Grupo de trabajo de la SEPAR. Sociedad Española de Neumología y Cirugía Torácica.
Arch Bronconeumol, 32 (1996), pp. 285-301
[3]
KK McCully, JA Faulkner.
Length-tension relationship of mammalian diaphragm muscles.
J Appl Physiol, 54 (1983), pp. 1681-1686
[4]
S Levine, L Kaiser, J Leferovich, B Tikunov.
Cellular adaptations in the diaphragm in chronic obstructive pulmonary disease.
N Engl J Med, 337 (1997), pp. 1799-1806
[5]
M Orozco-Levi, J Gea, J Lloreta, M Félez, J Minguella, S Serrano, et al.
Subcellular adaptation of the human diaphragm in chronic obstructive pulmonary disease.
Eur Respir J, 13 (1999), pp. 371-378
[6]
T Similowski, S Yan, AP Gauthier, PT Macklem, F Bellemare.
Contractile properties of the human diaphragm during chronic hyperinflation.
N Engl J Med, 325 (1991), pp. 917-923
[7]
Barreiro E, Gea J, Corominas JM, Hussain SH. Oxidative stress and nitric oxide production in the quadriceps femoris muscle of COPD patients [in press]. Am J Respir Cell Mol Biol.
[8]
RA Rabinovich, M Figueras, E Ardite, E Carbó, T Troosters, X Filella, et al.
Increased tumour necrosis factor-alpha plasma levels during moderate-intensity exercise in COPD patients.
Eur Respir J, 21 (2003), pp. 789-794
[9]
M Mizuno, NH Secher.
Histochemical characteristics of human expiratory and inspiratory intercostal muscles.
J Appl Physiol, 67 (1989), pp. 592-598
[10]
HG Koebe, C Kugler, H Dienemann.
Evidence-based medicine: lung volume reduction surgery (LVRS).
Thorac Cardiovasc Surg, 50 (2002), pp. 315-322
[11]
M Orozco-Levi, J Lloreta, J Minguella, S Serrano, JM Broquetas, J Gea.
Injury of the human diaphragm associated with exertion and chronic obstructive pulmonary disease.
Am J Respir Crit Care Med, 164 (2001), pp. 1734-1739
[12]
RL Hughes, H Katz, V Sahgal, JA Campbell, R Hartz, TW Shields.
Fiber size and energy metabolites in five separate muscles from patients with chronic obstructive lung diseases.
Respiration, 44 (1983), pp. 321-328
[13]
M Pasto, J Minguella, M Orozco-Levi, J Palacio, M Félez, J Broquetas, J Gea.
Obtención de muestras del diafragma humano en el curso de laparotomía alta. Análisis estructural.
Arch Bronconeumol, 36 (2000), pp. 19-24
[14]
MA Jiménez-Fuentes, J Gea, O Pallas, F Gallego, MA Félez, JM Broquetas.
Morfometría fibrilar en el músculo intercostal externo. Comparación entre los lados dominante y no dominante en pacientes con EPOC severa.
Arch Bronconeumol, 34 (1998), pp. 189-193
[15]
American Thoracic Society.
Standards for the diagnosis and care of patients with COPD.
Am J Respir Crit Care Med, 152 (1995), pp. S78-S121
[16]
J Roca, J Sanchís, A Agustí-Vidal, et al.
Spirometric reference values from a Mediterranean population.
Bull Eur Physiopathol Respir, 22 (1986), pp. 217-224
[17]
J Roca, F Burgos, JA Barberà, et al.
Prediction equations for plethysmographic lung volumes.
Respir Med, 92 (1998), pp. 454-460
[18]
J Roca, R Rodríguez-Roisin, E Cobo, et al.
Single-breath carbon monoxide diffusing capacity prediction equations from a Mediterranean population.
Am Rev Respir Dis, 141 (1990), pp. 1026-1032
[19]
P Morales, J Sanchis, PJ Cordero, JL Déez.
Presiones estáticas respiratorias máximas en adultos. Valores de referencia para una población mediterránea caucásica.
Arch Bronconeumol, 33 (1997), pp. 213-219
[20]
WM Thurlbeck.
Diaphragm and body weight in emphysema.
Thorax, 33 (1978), pp. 483-487
[21]
JM Hards, WD Reid, RL Pardy, PD Pare.
Respiratory muscle fiber morphometry. Correlation with pulmonary function and nutrition.
Chest, 97 (1990), pp. 1037-1044
[22]
M Mizuno, NH Secher, B Saltin.
Fibre types, capillary supply and enzyme activities in human intercostal muscles.
Clin Physiol, 5 (1985), pp. 121-135
[23]
J Sauleda, J Gea, M Orozco-Levi, J Corominas, J Minguella, C Aguar, et al.
Structure and function relationships of the respiratory muscles.
Eur Respir J, 11 (1998), pp. 906-911
[24]
A Ramírez-Sarmiento, M Orozco-Levi, R Guell, E Barreiro, N Hernéndez, S Mota, et al.
Inspiratory muscle training in patients with chronic obstructive pulmonary disease: structural adaptation and physiologic outcomes.
Am J Respir Crit Care Med, 166 (2002), pp. 1491-1497
[25]
J Gea, Q Hamid, G Czaika, et al.
Expression of myosin heavy chain isoforms in the respiratory muscles following inspiratory resistive breathing.
Am J Respir Crit Care Med, 161 (2000), pp. 1274-1278
[26]
MC Aguar.
Estructura y función de los músculos respiratorios en la EPOC: desarrollo de un modelo de biopsia ambulatoria [doctoral thesis], Universidad Autónoma de Barcelona, (1995),
[27]
RA Rabinovich, E Ardite, T Troosters, N Carbo, J Alonso, JM González de Suso, et al.
Reduced muscle redox capacity after endurance training in patients with chronic obstructive pulmonary disease.
Am J Respir Crit Care Med, 164 (2001), pp. 1114-1118
[28]
A Agustí, J Sauleda, M Morla, C Miralles, X Busquets.
Disfunción del músculo esquelético en la EPOC. Mecanismos celulares. Cell mechanisms.
Arch Bronconeumol, 37 (2001), pp. 197-205
[29]
AG Agustí, J Sauleda, C Miralles, C Gómez, B Togores, E Sala, et al.
Skeletal muscle apoptosis and weight loss in chronic obstructive pulmonary disease.
Am J Respir Crit Care Med, 166 (2002), pp. 485-489
[30]
E Barreiro, M Hameed, C Casadevall, S Harridge, M Orozco-Levi, G Goldspink, et al.
Mechano and insulin-like I growth factor gene expression in the costal diaphragm of severe COPD patients [abstract].
Am J Respir Crit Care Med, 167 (2003), pp. A834
[31]
K Buzinska, G Supinski, AF Di Marco.
Inspiratory action of separate external and parasternal intercostal muscle contraction.
J Appl Physiol, 67 (1989), pp. 1395-1400
[32]
A de Troyer, GA Farkas.
Linkage between parasternals and external intercostals during resting breathing.
J Appl Physiol, 69 (1990), pp. 509-516
[33]
GA Farkas, M Decramer, DF Rochester, A de Troyer.
Contractile properties of intercostal muscles and their functional significance.
J Appl Physiol, 59 (1985), pp. 528-535
[34]
J Gea.
Myosin gene expression in the respiratory muscles.
Eur Respir J, 10 (1997), pp. 2404-2410
[35]
G Gehr, R Gentz, M Brockhaus, H Loetscher, W Lesslauer.
Both tumor necrosis factor receptor types mediate proliferative signals in human mononuclear cell activation.
J Immunol, 149 (1992), pp. 911-917
[36]
YP Li, MB Reid.
Effect of tumor necrosis factor-alpha on skeletal muscle metabolism.
Curr Opin Rheumatol, 13 (2001), pp. 483-487
[37]
M Saghizadeh, JM Ong, T Garvey, RR Henry, PA Kern.
The expression of TNF-α by human muscle. Relationship to insulin resistance.
J Clin Invest, 97 (1996), pp. 1111-1116
[38]
C Coronell, J Martínez-Llorens, A Ramírez-Sarmiento, M Orozco-Levi, E Barreiro, J Gea.
Cytokine expression at the external intercostal muscle of healthy human beings. Effects of aging, sex and an exhaustive exercise.
An J Respir Crit Care Med, 167 (2003), pp. A27
[39]
Casadevall C, Coronell C, Barreiro E, Corominas JM, Orozco-Levi M, Gea J. Increase in the expression of the gene encoding TNF-α in the human external intercostal muscle following inspiratory loading [in press]. Am J Respir Crist Care Med 2004.
[40]
S Harridge.
Ageing and local growth factors in muscle.
Scand J Med Sci Sports, 13 (2003), pp. 34-39
[41]
G Goldspink.
Changes in muscle mass and phenotype and the expression of autocrine and systemic growth factors by muscle in response to stretch and overload.
J Anat, 194 (1999), pp. 323-334
[42]
S Vallee, F Fouchier, P Bremond, C Briand, J Marvaldi, S Champion.
Insulin-like growth factor-1 downregulates nuclear factor kappaB activation and upregulates interleukin-8 gene expression induced by tumor necrosis factor alpha.
Biochem Biophys Res Commun, 305 (2003), pp. 831-839

Dr. C. Coronell's work was financed by a research grant from the Spanish Ministry of Science and Technology (Beca de Movilización de Investigadores y Profesores Extranjeros del Ministerio de Ciencia y Tecnología ref. 72129052)

This study was jointly financed by the European Union's V Framework Program (ref. QLRT-2000-00417), the Spanish Ministry of Science and Technology's National Research and Development Plan (Plan Nacional I + D del Ministerio de Ciencia y Tecnología ref. SAF 2001-0426), and by the Red RESPIRA (RTIC C03/11, FIS, ISC III) of the Spanish Society of Pulmonology and Thoracic Surgery (SEPAR).

Copyright © 2004. Sociedad Española de Neumología y Cirugía Torácica (SEPAR)
Archivos de Bronconeumología
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?