Journal Information
Vol. 36. Issue 8.
Pages 450-454 (September 2000)
Share
Share
Download PDF
More article options
Vol. 36. Issue 8.
Pages 450-454 (September 2000)
Full text access
Valoración morfométrica de pulmones de rata insuflados con líquido fijador a diferentes presiones próximas a la capacidad pulmonar total
The morphometric study of rat lungs after liquid-fixing to different pressures near total lung capacity
Visits
8099
J.D. Escolar Castellóna,*, M.A. Escolar Castellóna, C. Tejero Justeb, P.A. Roche Rochec
a Profesor Titular. Departamento de Ciencias Morfológicas. Universidad de Zaragoza
b Doctorando. Departamento de Ciencias Morfológicas. Universidad de Zaragoza.
c Profesor Asociado Médico. Departamento de Medicina y Psiquiatría. Universidad de Zaragoza.
This item has received
Article information
Abstract
Bibliography
Download PDF
Statistics
Introducción

En la actualidad se acepta que la fijación pulmonar con líquido fijador por vía traqueal a 25cm de presión de H2O es la más idónea. Sin embargo, hay estudios que aparentemente no lo confirman.

Material y métodos

Se ha utilizado ratas Fischer cuyos pulmones fueron insuflados con líquido fijador a cuatro diferentes presiones: 20, 25, 30 y 35 cmH2O. Los pulmones fijados se procesaron para microscopia de luz y se estudiaron morfométricamente. Se cuantificaron las siguientes variables: volumen pulmonar, volumen de tejido, volumen aéreo, superficie alveolar interna (SAI), cuerda alveolar, para medir el tamaño del espacio aéreo distal y número de alvéolos. Los resultados se compararon estadísticamente.

Resultados

El volumen pulmonar aumentó con la presión de insuflación, siendo significativo al elevar la presión 20 a 25cm y de 30 a 35 cmH2O. El volumen de aire no se modificó, pero sí el del tejido al incrementar la presión de 20 a 30 cmH2O y de 30 a 35 cmH2O. El aumento del volumen de tejido lo relacionamos con extravasación de líquido fijador al intersticio. El número de alvéolos aumentó con la presión siendo significativo al incrementar de 20 a 30cm y de 30 a 35 cmH2O. La SAI aumentó con la presión siendo significativo entre 20cm y el resto de los grupos. La cuerda alveolar, que está en relación con el tamaño de los alvéolos, disminuyó de tamaño con la presión siendo significativo al pasar de 20 a 25cm.

Conclusión

La presión de 25 cmH2O es la ideal para fijar los pulmones con líquido. Presiones inferiores distienden parcialmente el pulmón y presiones superiores pueden producir el paso de líquido al espacio intersticial.

Palabras clave:
Rata, fijación pulmonar
Capacidad pulmonar total
Presión transpulmonar
Distensibilidad pulmonar
Morfometría
Introduction

Liquid lung fixing through the trachea to a pressure of 25 cmH2O is currently accepted to be ideal. However, some studies do not seem to confirm that assumption.

Material and methods

The lungs of Fischer rats were filled with fixing liquid to four different pressures: 20cm, 25cm, 30cm and 35 cmH2O. The fixed lungs were processed for inspection under a light microscope for morphometric study. The following variables were recorded: lung volume, tissue volume, air volume, internal alveolar surface (IAS), alveolar chord to measure the size of the distal air space, and the number of alveoli. Statistical comparisons were performed.

Results

Lung volume increased with insufflation pressure, with significant differences related to pressure increases from 20cm to 25cm and from 30cm to 35 cmH2O. Air volume did not change, although tissue volume changed when pressure increased from 20cm to 30 cmH2O and from 30cm to 35 cmH2O. The increase of tissue volume was related to extravasation of interstitial fixer. The number of alveoli increased with pressure from 20 to 30cm and from 30 to 35 cmH2O. IAS increased with pressure from 20cm and all the other pressures. Alveolar chord, which is related to size of alveoli, decreased significantly as pressure increased from 20cm to 25cm.

Conclusion

A pressure of 25 cmH2O is ideal for liquid fixing of lung volumes. With lower pressures the lung is partially distended and with higher pressures the fluid can pass into the interstitial space.

Key words:
Rats
Lung fixing
Total lung capacity
Transpulmonary pressure
Pulmonary distensibility
Morphometry
Full text is only aviable in PDF
Bibliografía
[1.]
H. Lum, H. Mitzner.
A species comparison of alveolar size and surface forces.
J Appl Physiol, 62 (1987), pp. 1865-1871
[2.]
J. Gil, H. Bachofen, P. Gehr, E.R. Weibel.
Alveolar volume-surface area relation in air-and saline-filled lungs fixed by vascular perfusion.
J Appl Physiol, 47 (1979), pp. 990-1001
[3.]
H. Bachofen, J. Hildebrat, M. Bachofen.
Pressure-volume curves of air-and liquid-filled excised lung-surface tension in situ.
J Appl Physiol, 29 (1970), pp. 422-431
[4.]
J.B. Forrest, E.R. Weibel.
Morphometric estimation of pulmonary diffusion capacity.
Respir Physiol, 24 (1975), pp. 191-202
[5.]
J.B. Forrest.
Lung tissue plasticity: morphometric analysis of anisotropic strain in liquid filled lungs.
Respir Physiol, 27 (1976), pp. 223-239
[6.]
K.E. Pinkerton, B.E. Barry, J. O’Neil, J.A. Raub, P.C. Pratt, J.D. Crapo.
Morphologic changes in the lung during the lifespan of Fischer 344 rats.
AJ Anat, 164 (1982), pp. 155-174
[7.]
N.N. Stanley, R. Alper, E.L. Cunningham, N.S. Cherniack, N.A. Kefalides.
Effects of a molecular change in collagen on lung structure and mechanical function.
J Clin Invest, 55 (1975), pp. 1195-1201
[8.]
J.D. Escolar, C. Tejero, M.A. Escolar, F. Montalvo, R. Garisa.
Methodological contribution for the morphometric study of the lung: approximation to the ideal sample size and quantification.
Anat Rec, 247 (1997), pp. 501-511
[9.]
A. Assimacopoulos, R. Guggenheim, Y. Kapanci.
Changes in alveolar capillary configuration at different levels of lung inflation in the rat.
An ultrastructural and morphometric study. Lab Invest, 34 (1996), pp. 10-22
[10.]
W. Storey, A.C. Staub.
Ventilation of terminal air units.
J Appl Physiol, 17 (1962), pp. 391-397
[11.]
E. D’Angelo.
Local alveolar size and transpulmonary pressure in situ and in isolated lungs.
Respir Physiol, 14 (1972), pp. 251-266
[12.]
O. Okada, R.G. Presson, K. Kevin, S. Godbey, R.L. Cpen, W.W. Wagner.
Capillary perfusion patterns in single alveolar wals.
J Appl, 72 (1992), pp. 183-184
[13.]
W. Cheng, D.S. DeLong, G.N. Franz, E.L. Petsonk, D.G. Frazer.
Contribution of opening and closing of units to lung hysteresis.
Respir Physiol, 102 (1995), pp. 205-215
[14.]
H. Lum, I. Huang, W. Mitzner.
Morphological evidence for alveolar recruitment during inflation at hight transpulmonary pressure.
J Appl Physiol, 68 (1990), pp. 2280-2286
[15.]
R.L. Conhaim, S.J. Lai-Fook, A. Eaton.
Secuence of interstitial liquid accumulation in liquid-inflated sheep lung lobes.
J Appl Physiol, 66 (1989), pp. 2659-2666
[16.]
D.X.Y. Wu, E.R. Weibel, H. Bachofen.
Lung lesions in experimental hydrostatic pulmonary edema: An electron microscopic and morfometric study.
Exp Lung Res, 21 (1995), pp. 711-730
[17.]
G. Hayatdavoudi, J.D. Crapo, F.J. Miller, J. O’Neil.
Factor determining degree of inflation in intratacheally fixed rat lungs.
J Appl Physiol Respirat Environ Exercise Physiol, 48 (1980), pp. 389-393
[18.]
T.A. Jones, E.L. Petsonk, D.G. Frazer.
Effect of temperature on pressure- volume hysteresis of excised lung.
Respiration Physiology, 106 (1996), pp. 47-55
[19.]
H. Bachofen, A. Ammann, D. Wangensteen, E.R. Weibel.
Perfusion fixation lungs for structure-function analysis: credits and limitations.
J Appl Physiol Respirat Environ Exercise Physiol, 53 (1982), pp. 528-533
Copyright © 2000. Sociedad Española de Neumología y Cirugía Torácica
Archivos de Bronconeumología
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?