Journal Information
Vol. 39. Issue 10.
Pages 449-454 (October 2003)
Share
Share
Download PDF
More article options
Vol. 39. Issue 10.
Pages 449-454 (October 2003)
Full text access
Valor predictivo de la clínica para la identificación de los pacientes con síndrome de apneas-hipopneas durante el sueño susceptibles de tratamiento con presión positiva continua de la vía aérea (CPAP)
Clinical Predictors of Sleep Apnea-Hypopnea Syndrome Susceptible to Treatment With Continuous Positive Airway Pressure
Visits
9062
M.A. Martínez Garcíaa,
Corresponding author
med013413@nacom.es

Correspondencia: Unidad de Neumología. Servicio de Medicina Interna. Hospital General de Requena.Paraje Casa Blanca, s/n. 46340 Requena. Valencia. España
, J.J. Soler Cataluñaa, P. Román Sánchezb, L. Cabero Saltb, I. Giménez Ibáñezb, T. Gastaldo Palopb
a Unidad de Neumología. Hospital General de Requena. Valencia. Hospital General de Requena. Valencia. España
b Servicio de Medicina Interna. Hospital General de Requena. Valencia. España
This item has received
Article information
Abstract
Bibliography
Download PDF
Statistics
Objetivo

Analizar el valor predictivo de las variables clínicas en la identificación de pacientes con sospecha de síndrome de apneas-hipopneas durante el sueño (SAHS) con un índice de apneas-hipopneas (IAH) superior a 30.

Material y método

Se recogieron datos referentes a variables generales, antropométricas, antecedentes personales cardiorrespiratorios, clínica y la sensación subjetiva del clínico. Se excluyó a los pacientes con insuficiencia respiratoria diurna o cardíaca. A todos ellos se les realizó un estudio poligráfico (AutoSet®) con determinación automática del IAH y manual del índice de apneas obstructivas y centrales. Mediante la construcción de un modelo lógistico se calculó la probabilidad individual de presentar un IAH=30 así como el valor predictivo de cada variable estudiada por se-parado y de la ecuación logística final.

Resultados

Se estudió a 329 pacientes, con una edad media ± desviación estándar de 58 ± 13,45 años; el 76,4% eran varones. Las variables de 207 pacientes se utilizaron para la construcción de la ecuación logística: logit P=2,5 hipertensión arterial + 1,5 test de Epworth + índice de masa corporal + 0,6 apneas presenciadas y repetidas – 2,1; siendo logit P=log e (1-p)/p y valorando las variables como dicotó-micas con puntos de corte para el test de Epworth de 11 y para el índice de masa corporal de 30kg/m 2 . El valor diag-nóstico de dicha ecuación fue: sensibilidad del 80,2% (75-86%); especificidad del 93,4% (89-95%); valor predictivo positivo del 89,6% (84-93%) y valor predictivo negativo del 86,9% (81-90%), lo que supuso un porcentaje de pacientes correctamente clasificados del 89,6%. La variable que pre-sentó mayor capacidad predictora fue la presencia de hiper-tensión arterial. La ecuación se validó prospectivamente en los restantes 102 pacientes.

Conclusiones

Los parámetros clínicos podrían ser útiles en la identificación, previa a la realización del estudio diag-nóstico de SAHS, de aquellos pacientes con sospecha de SAHS que presentaran un IAH30.

Palabras clave:
Síndrome de apneas-hipopneas
Sueño
Regresión logística
AutoSet®
Objective

To analyze the predictive value of clinical data for identifying patients suspected of sleep apnea-hypopnea syndrome with an apnea-hypopnea index (AHI)≥30.

Material and method

Patient characteristics, cardio-respiratory medical history, and clinical signs and symp-toms were recorded for all patients. Exclusion criteria were daytime respiratory insufficiency or heart failure. All patients underwent polysomnographic testing (AutoSet®Portable Plus II, ResMed Corp, Sydney, Australia) for automatic AHI calculation and manual determination of central and obstructive apneas. A logistic regression model was constructed to calculate the likelihood of an individual's presenting an AHI≥30 as well as the predictive value of each variable and of the final model.

Results

Three hundred twenty-nine patients with a mean ± SD age of 58 ± 13.45 years were studied; 76.4% were men. Data for 207 patients were used to construct the logistic regression model: logit (P)=2.5 blood pressure + 1.5 Epworth test + body mass index + 0.6 repeated observed episodes of apnea – 2.1. Logit(P) was log e (1-p)/P and variables were dichotomized with cut points of 11 for the Epworth test and of 30kg/m 2 for body mass index. The diagnostic sensitivity of the model was 80.2% (75%-86%), specificity was 93.4% (89%-95%), positive predictive value was 89.6% (84%-93%) and negative predictive value was 86.9% (81%-90%), such that 89.6% of the patients were correctly classified. The variable with the greatest predictive value was high blood pressure. The model was validated prospectively in the remaining 102 patients.

Conclusions

Prior to diagnostic tests for SAHS, clinical data can be useful for identifying patients suspected to have a AHI30.

Keywords:
Apnea-hypopnea syndrome
Sleep
Logistic regression
AutoSet®
Full text is only aviable in PDF
Bibliografía
[1.]
D.E. Phillipson.
Sleep apnea. A mayor public health problem.
N Engl J Med, 328 (1993), pp. 1271-1273
[2.]
J. Durán, S. Esnaola, R. Rubio, A. Iztueta.
Obstructive sleep apneahipopnea and related clinical features in a population-based sample of subjects aged 30 yo 70 years.
Am J Respir Crit Care Med, 163 (2001), pp. 685-689
[3.]
American Sleep Disorders Association.
Practice parameters for the indications for polysomnography and related procedures.
Sleep, 20 (1997), pp. 406-422
[4.]
E.M. García Díaz, F. Capote Gil, A. Cano Gómez, A. Sánchez Armengol, C. Carmona Bernal, J.G. Soto Campos.
Poligrafía respiratoria en el diagnóstico del síndrome de apneas obstructivas durante el sueño.
Arch Bronconeumol, 33 (1997), pp. 69-73
[5.]
J. Durán, J. Amilibia, F. Barbé, F. Capote.
Disponibilidad de recursos técnicos para el diagnóstico y tratamiento del síndrome de apneas obstructivas del sueño en los hospitales de la red pública del estado.
Arch Bronconeumol, 31 (1995), pp. 463-469
[6.]
F. Barbé, J. Pericás, A. Muñoz, L. Findley, J.M. Antó, A.G.N. Agustí.
Automobile accident in patients with sleep apnea syndrome.
Am J Respir Crit Care Med, 158 (1998), pp. 18-22
[7.]
J. Terán-Santos, A. Jiménez-Gómez, J. Cordero-Guevara.
The association between sleep apnea and the risk of traffic accidents.
N Engl J Med, 340 (1999), pp. 847-851
[8.]
J. He, M.H. Kryger, F.J. Zorich, W. Conway, T. Roth.
Mortality and apnea index in obstructive sleep apnea: experience in 358 male patients.
Chest, 94 (1988), pp. 9-14
[9.]
R.S.T. Leung, T.D. Bradley.
Sleep apnea and cardiovascular disease.
Am J Respir Crit Care Med, 164 (2001), pp. 2147-2165
[10.]
J.L. Kiely, W.T. McNicholas.
Cardiovascular risk factors in patients with obstructive sleep apnoea syndrome.
Eur Respir J, 16 (2000), pp. 128-133
[11.]
E. Sharar, C.W. Whitney, S. Redline, E.T. Lee, A.B. Newman, F.J. Nieto, et al.
Sleep-disordered breathing and cardiovascular disease. Cross-sectional results of the Sleep Heart Health Study.
Am J Respir Crit Care Med, 163 (2001), pp. 19-25
[12.]
J.M. Monserrat, J. Amilibia, F. Barbé, F. Capote, J. Durán, N.G. Mangado, et al.
Tratamiento del síndrome de las apneas-hipopneas durante el sueño.
Arch Bronconeumol, 34 (1998), pp. 204-206
[13.]
E. Ballester, J.R. Badía, L. Hernández, E. Carrasco, J. De Pablo, C. Fornas, et al.
Evidence of the effectiveness of continuous positive airway pressure in the treatment of sleep apnea/hypopnea syndrome.
Am J Respir Crit Care Med, 159 (1999), pp. 495-501
[14.]
V. Hofftein, J.P. Szalai.
Predictive value of clinical features in diagnosing obstructive sleep apnea.
Sleep, 16 (1993), pp. 118-122
[15.]
P.C. Deegan, W.T. McNicholas.
Predcitive value of clinical features for the obstructive sleep apnoea syndrome.
Eur Respir J, 9 (1998), pp. 117-124
[16.]
C. Netzer, A. Stoohs, M. Netzer, K. Clark, P. Strohl.
Using the Berlin Questionnaire to identify patients at risk for the sleep apnea syndrome.
Ann Intern Med, 131 (1999), pp. 485-491
[17.]
J.B. Schellenberg, G. Maislin, R.J. Schwab.
Physical findings and the risk for obstructive sleep apnea.
Am J Respir Crit Care Med, 162 (2000), pp. 740-748
[18.]
W.W. Flemons, W.A. Whitelaw, R. Brant, J. Remmers.
Likelihood ratios for a sleep apnea clinical prediction rule.
Am J Respir Crit Care Med, 150 (1994), pp. 1279-1285
[19.]
S.D. Kirby, P. Eng, W. Danter, C.F.P. George, T. Francovic, R.R.F. Ruby, et al.
Neural network prediction of obstructive sleep apnea from clinical criteria.
Chest, 116 (1999), pp. 409-415
[20.]
S.M. Harding.
Prediction formulae for sleep-disordered breathing.
Curr Op Pulm Med, 7 (2001), pp. 381-385
[21.]
J.A. Rowley, L.S. Aboussouan, M.S. Badr.
The use of clinical prediction formulas in the evaluation of obstructive sleep apnea.
Sleep, 23 (2000), pp. 929-937
[22.]
F. Zerah-Lancner, F. Lofaso, M.P. D'Ortho, C. Delclaux, F. Goldenberg, A. Coste, et al.
Predictive value of pulmonary function parameters for sleep apnea syndrome.
Am J Respir Crit Care Med, 162 (2000), pp. 2208-2212
[23.]
C.A. Kushida, B. Efron, C. Guilleminault.
A predictive morphometric model for the obstructive sleep apnea syndrome.
Ann Intern Med, 127 (1997), pp. 581-587
[24.]
W.W. Flemmons.
Obstructive Sleep apnea.
N Engl J Med, 347 (2002), pp. 498-501
[25.]
E. Chiner, J.M. Arriero, J. Signes-Costa, J. Marco, I. Fuentes.
Validación de la versión española del test de somnolencia Epworth en pacientes con síndrome de apneas del sueño.
Arch Bronconeumol, 35 (1999), pp. 422-427
[26.]
Guidelines Subcommitee.
1999 World Health Organization- International Society of Hypertension Guidelines for the Management of Hypertension.
J Hypertens, 17 (1999), pp. 151-183
[27.]
R.J.O. Davies, N.J. Ali, J.R. Stradling.
Neck circumference and other clinical features in the diagnosis of the obstructive sleep apnea syndrome.
Thorax, 47 (1992), pp. 101-105
[28.]
P. Mayer, J.C. Meurice, F. Philip-Joet, A. Cornette, D. Rakotonanahary, N. Meslier, et al.
Simultaneous laboratory-based comparison of ResMed Autoset with polysomnography in the diagnosis of sleep apnoea/hypopnoea syndrome.
Eur Respir J, 12 (1998), pp. 770-775
[29.]
P.A. Bradley, I.L. Mortimore, N.J. Douglas.
Comparison of polysomnography with ResCare Autoset in the diagnosis of the sleep apnoea/ hypopnoea syndrome.
Thorax, 50 (1995), pp. 1201-1203
[30.]
J.L. Kiely, C. Delahunty, S. Matthews, W.T. McNicholas.
Comparison of a limited computerized diagnostic system (ResCare Autoset) with polysomnography in the diagnosis of obstructive sleep apnoea syndrome.
Eur Respir J, 9 (1998), pp. 2360-2364
Copyright © 2003. Sociedad Española de Neumología y Cirugía Torácica
Archivos de Bronconeumología
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?