Journal Information
Vol. 41. Issue 1.
Pages 34-41 (February 2005)
Vol. 41. Issue 1.
Pages 34-41 (February 2005)
Revisiones
DOI: 10.1157/13070282
Full text access
Mecanismos moleculares de los glucocorticoides
Visits
33737
B.G. Cosíoa,
, A. Torregob, I.M. Adcockb
Corresponding author
bcosio@hsd.es
Correspondencia: Dr. B.G. Cosío. Servicio de Neumología. Hospital Universitario Son Dureta. Andrea Doria, 55. 07014 Palma de Mallorca. Baleares. España.
Correspondencia: Dr. B.G. Cosío. Servicio de Neumología. Hospital Universitario Son Dureta. Andrea Doria, 55. 07014 Palma de Mallorca. Baleares. España.
This item has received
Article information
Full text is only aviable in PDF
Bibliografía
[1.]
P.J. Barnes.
Anti-inflammatory actions of glucocorticoids: molecular mechanisms.
Clin Sci (Lond), 94 (1998), pp. 557-572
[2.]
T. Reichstein, J. Von Euw.
Constituents of the adrenal cortex: isolation of substance Q (desoxycorticosterone) and R with other materials.
Helvet Chim Acta, 21 (1938), pp. 1181
[3.]
P.J. Barnes.
Inhaled glucocorticoids for asthma.
N Engl J Med, 332 (1995), pp. 868-875
[4.]
S.P. Umland, R.P. Schleimer, S.L. Johnston.
Review of the molecular and cellular mechanisms of action of glucocorticoids for use in asthma.
Pulm Pharmacol Ther, 15 (2002), pp. 35-50
[5.]
I.M. Adcock.
Glucocorticoids: new mechanisms and future agents.
Curr Allergy Asthma Rep, 3 (2003), pp. 249-257
[6.]
G. Pelaia, A. Vatrella, G. Cuda, R. Maselli, S.A. Marsico.
Molecular mechanisms of corticosteroid actions in chronic inflammatory airway diseases.
Life Sci, 72 (2003), pp. 1549-1561
[7.]
I.M. Adcock, K. Ito.
Molecular mechanisms of corticosteroid actions.
Monaldi Arch Chest Dis, 55 (2000), pp. 256-266
[8.]
A.F. Holm, T. Godthelp, W.J. Fokkens, E.A. Severijnen, P.G. Mulder, T.M. Vroom, et al.
Long-term effects of corticosteroid nasal spray on nasal inflammatory cells in patients with perennial allergic rhinitis.
Clin Exp Allergy, 29 (1999), pp. 1356-1366
[9.]
P.J. Barnes.
Molecular mechanisms of steroid action in asthma.
J Allergy Clin Immunol, 97 (1996), pp. 159-168
[10.]
P.J. Barnes, S. Pedersen, W.W. Busse.
Efficacy and safety of inhaled corticosteroids. New developments.
Am J Respir Crit Care Med, 157 (1998), pp. S1-S53
[12.]
R.H. Oakley, M. Sar, J.A. Cidlowski.
The human glucocorticoid receptor beta isoform. Expression, biochemical properties, and putative function.
J Biol Chem, 271 (1996), pp. 9550-9559
[13.]
A. Torrego, L. Pujols, C. Picado.
Respuesta a tratamiento con glucocorticoideos en asma. Papel de las isoformas alfa y beta del receptor glucocorticoideo.
Arch Bronconeumol, 38 (2002), pp. 436-440
[14.]
D.F. Smith, D.O. Toft.
Steroid receptors and their associated proteins.
Mol Endocrinol, 7 (1993), pp. 4-11
[15.]
H.M. Reichardt, J.P. Tuckermann, M. Gottlicher, M. Vujic, F. Weih, P. Angel, et al.
Repression of inflammatory responses in the absence of DNA binding by the glucocorticoid receptor.
EMBOJ, 20 (2001), pp. 7168-7173
[16.]
I.M. Adcock, S.J. Lane.
Corticosteroid-insensitive asthma: molecular mechanisms.
J Endocrinol, 178 (2003), pp. 347-355
[17.]
M. Kagoshima, K. Ito, B. Cosio, I.M. Adcock.
Glucocorticoid suppression of nuclear factor-kappa B: a role for histone modifications.
Biochem Soc Trans, 31 (2003), pp. 60-65
[18.]
I.M. Adcock.
Molecular mechanisms of glucocorticosteroid actions.
Pulm Pharmacol Ther, 13 (2000), pp. 115-126
[19.]
T. Meyer, J. Carlstedt-Duke, D.B. Starr.
A weak TATA box is a prerequisite for glucocorticoid-dependent repression of the osteocalcin gene.
J Biol Chem, 272 (1997), pp. 30709-30714
[20.]
C. Jonat, H.J. Rahmsdorf, K.K. Park, A.C. Cato, S. Gebel, H. Ponta, et al.
Antitumor promotion and antiinflammation: down-modulation of AP-1 (Fos/Jun) activity by glucocorticoid hormone.
Cell, 62 (1990), pp. 1189-1204
[21.]
A. Ray, K.E. Prefontaine.
Physical association and functional antagonism between the p65 subunit of transcription factor NFkappa B and the glucocorticoid receptor.
Proc Natl Acad Sci U S A, 91 (1994), pp. 752-756
[22.]
Z. Zhang, S. Jones, J.S. Hagood, N.L. Fuentes, G.M. Fuller.
STAT3 acts as a co-activator of glucocorticoid receptor signaling.
J Biol Chem, 272 (1997), pp. 30607-30610
[23.]
E. Stocklin, M. Wissler, F. Gouilleux, B. Groner.
Functional interactions between Stat5 and the glucocorticoid receptor.
Nature, 383 (1996), pp. 726-728
[24.]
R. Moriggl, S. Berchtold, K. Friedrich, G.J. Standke, W. Kammer, M. Heim, et al.
Comparison of the transactivation domains of Stat5 and Stat6 in lymphoid cells and mammary epithelial cells.
Mol Cell Biol, 17 (1997), pp. 3663-3678
[25.]
A.P. Wolffe, J.J. Hayes.
Chromatin disruption and modification.
Nucleic Acids Res, 27 (1999), pp. 711-720
[26.]
M. Grunstein.
Histone acetylation in chromatin structure and transcription.
Nature, 389 (1997), pp. 349-352
[27.]
K.A. Sheppard, K.M. Phelps, A.J. Williams, D. Thanos, C.K. Glass, M.G. Rosenfeld, et al.
Nuclear integration of glucocorticoid receptor and nuclear factor-kappa B signaling by CREB-binding protein and steroid receptor coactivator-1.
J Biol Chem, 273 (1998), pp. 29291-29294
[28.]
V.V. Ogryzko, R.L. Schiltz, V. Russanova, B.H. Howard, Y. Nakatani.
The transcriptional coactivators p300 and CBP are histone acetyltransferases.
Cell, 87 (1996), pp. 953-959
[29.]
K. Ito, P.J. Barnes, I.M. Adcock.
Glucocorticoid receptor recruitment of histone deacetylase 2 inhibits interleukin-1beta-induced histone H4 acetylation on lysines 8 and 12.
Mol Cell Biol, 20 (2000), pp. 6891-6903
[30.]
K. Ito, E. Jazwari, B. Cosio, P.J. Barnes, I.M. Adcock.
p65-activated histone acetyltransferase activity is repressed by glucocorticoids: Mifepristone fails to recruit HDAC2 to the p65/HAT complex.
J Biol Chem, 276 (2001), pp. 30208-30215
[31.]
J.L. Swantek, M.H. Cobb, T.D. Geppert.
Jun N-terminal kinase/stressactivated protein kinase (JNK/SAPK) is required for lipopolysaccharide stimulation of tumor necrosis factor alpha (TNF-alpha) translation: glucocorticoids inhibit TNF-alpha translation by blocking JNK/SAPK.
Mol Cell Biol, 17 (1997), pp. 6274-6282
[32.]
M. Bickel, R.B. Cohen, D.H. Pluznik.
Post-transcriptional regulation of granulocyte-macrophage colony-stimulating factor synthesis in murine T cells.
J Immunol, 145 (1990), pp. 840-845
[33.]
R. Newton, J. Seybold, L.M. Kuitert, M. Bergmann, P.J. Barnes.
Repression of cyclooxygenase-2 and prostaglandin E2 release by dexamethasone occurs by transcriptional and post-transcriptional mechanisms involving loss of polyadenylated mRNA.
J Biol Chem, 273 (1998), pp. 32312-32321
[34.]
R.I. Scheinman, P.C. Cogswell, A.K. Lofquist, A.S. Baldwin Jr.
Role of transcriptional activation of I kappa B alpha in mediation of immunosuppression by glucocorticoids.
Science, 270 (1995), pp. 283-286
[35.]
C. Brostjan, J. Anrather, V. Csizmadia, D. Stroka, M. Soares, F.H. Bach, et al.
Glucocorticoid-mediated repression of NF-kappa B activity in endothelial cells does not involve induction of I-kappa- B-alpha synthesis.
J Biol Chem, 271 (1996), pp. 19612-19616
[36.]
J.D. Croxtall, Q. Choudhury, H. Tokumoto, R.J. Flower.
Lipocortin-1 and the control of arachidonic acid release in cell signalling. Glucocorticoids (changed from glucorticoids) inhibit G proteindependent activation of cPLA2 activity.
Biochem Pharmacol, 50 (1995), pp. 465-474
[37.]
F.F. Davidson, M.D. Lister, E.A. Dennis.
Binding and inhibition studies on lipocortins using phosphatidylcholine vesicles and phospholipase A2 from snake venom, pancreas, and a macrophage-like cell line.
J Biol Chem, 265 (1990), pp. 5602-5609
[38.]
M. John, S. Lim, J. Seybold, P. Jose, A. Robichaud, B. O’Connor, et al.
Inhaled corticosteroids increase interleukin-10 but reduce macrophage inflammatory protein-1 alpha, granulocytemacrophage colony-stimulating factor, and interferon-gamma release from alveolar macrophages in asthma.
Am J Respir Crit Care Med, 157 (1998), pp. 256-262
[39.]
J. Atsuta, J. Plitt, B.S. Bochner, R.P. Schleimer.
Inhibition of VCAM-1 expression in human bronchial epithelial cells by glucocorticoids.
Am J Respir Cell Mol Biol, 20 (1999), pp. 643-650
[40.]
E.B. Haddad, A.J. Fox, J. Rousell, G. Burgess, P. McIntyre, P.J. Barnes, et al.
Post-transcriptional regulation of bradykinin B1 and B2 receptor gene expression in human lung fibroblasts by tumor necrosis factor-alpha: modulation by dexamethasone.
Mol Pharmacol, 57 (2000), pp. 1123-1131
[41.]
G.M. Walsh.
Mechanisms of human eosinophil survival and apoptosis.
Clin Exp Allergy, 27 (1997), pp. 482-487
[42.]
L.C. Meagher, J.M. Cousin, J.R. Seckl, C. Haslett.
Opposing effects of glucocorticoids on the rate of apoptosis in neutrophilic and eosinophilic granulocytes.
J Immunol, 156 (1996), pp. 4422-4428
[43.]
J.C. Mak, M. Nishikawa, P.J. Barnes.
Glucocorticosteroids increase beta 2-adrenergic receptor transcription in human lung.
Am J Physiol, 268 (1995), pp. L41-L46
[44.]
S. Heck, M. Kullmann, A. Gast, H. Ponta, H.J. Rahmsdorf, P. Herrlich, et al.
A distinct modulating domain in glucocorticoid receptor monomers in the repression of activity of the transcription factor. AP-1.
EMBO J, 13 (1994), pp. 4087-4095
[45.]
H. Schacke, A. Schottelius, W.D. Docke, P. Strehlke, S. Jaroch, N. Schmees, et al.
Dissociation of transactivation from transrepression by a selective glucocorticoid receptor agonist leads to separation of therapeutic effects from side effects.
Proc Natl Acad Sci U S A, 101 (2004), pp. 227-232
[47.]
S.J. Szefler, D.Y. Leung.
Glucocorticoid-resistant asthma: pathogenesis and clinical implications for management.
Eur Respir J, 10 (1997), pp. 1640-1647
[48.]
S.J. Lane, I.M. Adcock, D. Richards, C. Hawrylowicz, P.J. Barnes, T.H. Lee.
Corticosteroid-resistant bronchial asthma is associated with increased c-fos expression in monocytes and T lymphocytes.
J Clin Invest, 102 (1998), pp. 2156-2164
[49.]
P.J. Barnes, A.P. Greening, G.K. Crompton.
Glucocorticoid resistance in asthma.
Am J Respir Crit Care Med, 152 (1995), pp. S125-S140
[50.]
V.M. Keatings, A. Jatakanon, Y.M. Worsdell, P.J. Barnes.
Effects of inhaled and oral glucocorticoids on inflammatory indices in asthma and COPD.
Am J Respir Crit Care Med, 155 (1997), pp. 542-548
[51.]
S.V. Culpitt, W. Maziak, S. Loukidis, J.A. Nightingale, J.L. Matthews, P.J. Barnes.
Effect of high dose inhaled steroid on cells, cytokines, and proteases in induced sputum in chronic obstructive pulmonary disease.
Am J Respir Crit Care Med, 160 (1999), pp. 1635-1639
[52.]
K. Okamoto, H. Tanaka, H. Ogawa, Y. Makino, H. Eguchi, S. Hayashi, et al.
Redox-dependent regulation of nuclear import of the glucocorticoid receptor.
J Biol Chem, 274 (1999), pp. 10363-10371
[53.]
K. Okamoto, H. Tanaka, Y. Makino, I. Makino.
Restoration of the glucocorticoid receptor function by the phosphodiester compound of vitamins C and E, EPC-K1 (L-ascorbic acid 2-[3,4-dihydro-2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-2H-1-benzopyran-6-yl hydrogen phosphate] potassium salt), via a redox-dependent mechanism.
Biochem Pharmacol, 56 (1998), pp. 79-86
[54.]
B.G. Cosio, E. Jazrawi, P.J. Barnes, I.M. Adcock.
Oxidative stress augments cytokine production in different cell lines.
Am J Respir Crit Care Med, 165 (2002), pp. A88
[55.]
K. Ito, S. Lim, G. Caramori, K.F. Chung, P.J. Barnes, I.M. Adcock.
Cigarette smoking reduces histone deacetylase 2 expression, enhances cytokine expression, and inhibits glucocorticoid actions in alveolar macrophages.
FASEB J, 15 (2001), pp. 1110-1112
[56.]
B.G. Cosio, L. Isaprouni, K. Ito, E. Jazrawi, I.M. Adcock, P.J. Barnes.
Theophylline restores histone deacetylase activity and steroid responses in COPD macrophages.
J Exp Med, 200 (2004), pp. 689-695
[57.]
I.M. Adcock.
Glucocorticoid-regulated transcription factors.
Pulm Pharmacol Ther, 14 (2001), pp. 211-219
Copyright © 2005. Sociedad Española de Neumología y Cirugía Torácica