Journal Information
Vol. 42. Issue 7.
Pages 332-337 (July 2006)
Share
Share
Download PDF
More article options
Vol. 42. Issue 7.
Pages 332-337 (July 2006)
Originales
Full text access
Inflamación pulmonar y sistémica en 2 fenotipos de EPOC
Systemic and Lung Inflammation in 2 Phenotypes of Chronic Obstructive Pulmonary Disease
Visits
12912
José Luis Izquierdoa,
Corresponding author
jlizquierdo@sescam.org

Correspondencia: Dr. J.L. Izquierdo. Servicio de Neumología. Hospital Universitario. Donantes de Sangre, s/n. 19002 Guadalajara. España.
, Carlos Almonacida, Trinidad Parrab, Jaime Pérezb
a Servicio de Neumología. Hospital Universitario. Guadalajara. España
b Unidad de Investigación. Hospital Universitario. Guadalajara. España
This item has received
Article information
Abstract
Bibliography
Download PDF
Statistics
Objetivo

Investigar si los pacientes con enfermedad pulmonary obstructiva crónica (EPOC) con un mismo grado de limitación ventilatoria, pero diferente fenotipo clínico, presentan diferencias en el grado de respuesta inflamatoria pulmonary y/o sistémica.

Pacientes y métodos

Se estudió a 15 varones fumadores sin EPOC (grupo control) y a 39 varones con EPOC en situación clínica estable. Usando la relación factor de transferencia de monóxido de carbono/volumen alveolar (TLCO/VA%), se dividió a los pacientes con EPOC en 2 grupos: a) EPOC de predominio enfisema (EPOC-A; n=15), y b) EPOC de predominio bronquitis crónica (EPOC-B; n=24). La correcta clasificación de los pacientes se confirmó analizando aspectos clínicos y técnicas de imagen.

Resultados

Las concentraciones medias±DE de interleucina- 8 (IL-8) y de 8-isoprostano en el condensado de aire exhalado (CAE) fueron significativamente menores (p<0,05 para la IL-8 y p<0,01 para el 8-isoprostano) en los pacientes con predominio enfisematoso (IL-8: 0,34±0,70 pg/ml; 8-isoprostano: 0,07±0,26 pg/ml) que en los pacientes con bronquitis crónica (IL-8: 2,32±3,10pg/ml; 8-isoprostano: 1,77±2,98pg/ml) o que en los controles (IL-8: 3,14±4,59 pg/ml; 8-isoprostano: 1,92±2,84pg/ml). Los valores de IL- 8, leucotrieno B4 y 8-isoprostano en el CAE se relacionaron significativamente con los valores de TLCO/VA% (r=0,30, p<0,05; r=0,29, p=< 0,05, y r=0,46; p<0,01, respectivamente), pero no con el volumen espiratorio forzado en el primer segundo. Existió una relación negativa entre los valores de IL-8 (r=-0,31; p<0,05) y 8-isoprostano (r=-0,51; p<0,001) en suero y CAE. Sin embargo, esta correlación no fue significativa para el leucotrieno B4. No se observaron diferencias significativas entre fumadores activos y ex fumadores para IL-8, leucotrieno B4 y 8-isoprostano en suero y CAE.

Conclusiones

Los resultados de este estudio indican que en pacientes con EPOC la presencia de un fenotipo enfisematoso se acompaña de una menor respuesta inflamatoria y menor estrés oxidativo en el pulmón.

Palabras clave:
EPOC
Fenotipo
Inflamación
Estrés oxidativo
Objective

To study whether patients with chronic obstructive pulmonary disease (COPD) at the same level of flow limitation but with different clinical phenotypes present different degrees of systemic and/or pulmonary inflammation.

Patients and methods

We studied 15 male smokers without COPD (control group) and 39 males with COPD in stable clinical condition.

The COPD patients were assigned to 2 groups based on the ratio of carbon monoxide diffusing capacity (DLCO) to alveolar volume (DLCO/VA) expressed as a percentage as follows: a) mainly emphysema (n=15) and b) mainly chronic bronchitis (n=24). Classification was determined by comparing both clinical features and diagnostic images.

Results

Mean (SD) concentrations of interleukin 8 (IL-8) and 8-isoprostane in exhaled breath condensate (EBC) were significantly lower in patients with mainly emphysema (IL-8, 0.34 [0.70] pg/mL; 8-isoprostane, 0.07 [0.26] pg/mL) than in patients with chronic bronchitis (IL-8, 2.32 [3.10] pg/mL; 8-isoprostane, 1.77 [2.98] pg/mL) or in the controls (IL-8, 3.14 [4.59] pg/mL; 8-isoprostane, 1.92 [2.84]pg/mL); P<.05 for IL-8 comparisons and P<.01 for 8-isoprostane.

IL-8, leukotriene B4, and 8-isoprostano in EBC correlated significantly with DLCO/VA (% of predicted) (r=0.30, P<.05; r=0.29, P=<.05; and r=0.46, P<.01, respectively) but not with forced expiratory volume in 1 second. There was a negative correlation between EBC and serum levels of both IL-8 (r=-0.31; P<.05) and 8-isoprostane (r=-0.51; P<.001). The correlation between leukotriene B4 concentrations in EBC and serum was not significant, however.

No significant differences were found between smokers’ and ex-smokers’ serum levels of IL-8, leukotriene B4, 8-isoprostane in serum or EBC.

Conclusions

The results indicate that COPD patients with an emphysematous phenotype have a less intense inflammatory response and less oxidative stress in the lung.

Key words:
COPD
Phenotype
Inflammation
Oxidative stress
Full text is only aviable in PDF
Bibliografía
[1.]
B.R. Celli, W. MacNee.
Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper.
Eur Respir J, 23 (2004), pp. 932-946
[2.]
W.D. Kim, D. Eidelman, J.L. Izquierdo, et al.
Centrilobular and panlobular emphysema in smokers. Two distinct morphological and functional entities.
Am Rev Respir Dis, 144 (1991), pp. 1385-1390
[3.]
R.A. Pauwels, A.S. Buist, P.M.A. Calverley, et al.
Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. NHLBI/WHO global initiative for chronic obstructive lung disease (GOLD) workshop summary.
Am J Respir Crit Care Med, 163 (2001), pp. 1256-1276
[4.]
J.E. Cotes, J.M. Dabbs, P.C. Elwood, et al.
Iron-deficiency anaemia: its effect on transfer factor for the lung (diffusing capacity) and ventilation and cardiac frequency during submaximal exercise.
Clin Sci, 42 (1972), pp. 325-335
[5.]
M.P. Engelen, N.E. Deutz, R. Mostert, et al.
Response of whole-body protein and urea turnover to exercise differs between patients with chronic obstructive pulmonary disease with and without emphysema.
Am J Clin Nutr, 77 (2003), pp. 868-874
[6.]
M.P. Engelen, A.M. Schools, R.J. Lamers, et al.
Different patterns of chronic tissue wasting among patients with chronic obstructive pulmonary disease.
Clin Nutr, 18 (1999), pp. 275-280
[7.]
A.G. Agusti, A. Noguera, J. Sauleda, et al.
Systemic effects of chronic obstructive pulmonary disease.
Eur Respir J, 21 (2003), pp. 347-360
[8.]
P.N. Dekhuijzen, K.K. Aben, I. Dekker, et al.
Increased exhalation of hydrogen peroxide in patients with stable and unstable chronic obstructive pulmonary disease.
Am J Respir Crit Care Med, 154 (1996), pp. 813-816
[9.]
A.T. Hill, D. Bayley, R.A. Stockley.
The interrelationship of sputum inflammatory markers in patients with chronic bronchitis.
Am J Respir Crit Care Med, 160 (1999), pp. 893-898
[10.]
P. Montuschi, S.A. Kharitonov, G. Ciabattoni, et al.
Exhaled leukotrienes and prostaglandins in COPD.
Thorax, 58 (2003), pp. 585-588
[11.]
J.S. Seggev, W.H. Thornton Jr, T.E. Edes.
Serum leukotriene B4 levels in patients with obstructive pulmonary disease.
Chest, 99 (1991), pp. 289-291
[12.]
C. Yamamoto, T. Yoneda, M. Yoshikawa, et al.
Airway inflammation in COPD assessed by sputum levels of interleukin-8.
Chest, 112 (1997), pp. 505-510
[13.]
P. Montuschi, J.V. Collins, G. Ciabattoni, et al.
Exhaled 8-isoprostane as an in vivo biomarker of lung oxidative stress in patients with COPD and healthy smokers.
Am J Respir Crit Care Med, 162 (2000), pp. 1175-1177
[14.]
P. Montuschi, S.A. Kharitonov, G. Ciabattoni, et al.
Exhaled leukotrienes and prostaglandins in COPD.
Thorax, 58 (2003), pp. 585-588
[15.]
M. Saetta, W.D. Kim, J.L. Izquierdo, et al.
Extent of centrilobular and panacinar emphysema in smokers’ lungs: pathological and mechanical implications.
Eur Respir J, 7 (1994), pp. 664-671
[16.]
S.A. Kharitonov, P. Barnes.
Exhaled markers of pulmonary disease.
Am J Crit Care Med, 163 (2001), pp. 1693-1722
[17.]
J.L. Izquierdo Alonso, I. Sánchez Hernández, J. Fernádez Francés, et al.
Utility of transfer factor to detect different bronchodilator responses in patients with chronic obstructive pulmonary disease.
Respiration, 65 (1998), pp. 282-288
[18.]
D.C. Weir, I.R. Gove, A.S. Robertson, et al.
response to corticosteroids in chronic airflow obstruction: Relationship to emphysema and airways collapse.
Eur Respir J, 4 (1991), pp. 1185-1190
[19.]
O. Eliasson, A.C. Degraff.
The use of criteria for reversibility and obstruction to define patient groups for bronchodilator trials.
Am Rev Respir Dis, 132 (1985), pp. 858-864
[20.]
V.M. Pinto-Plata, H. Mullerova, J.F. Toso, M. Feudjo-Tepie, J.B. Soriano, R.S. Vessey, et al.
C-reactive protein in patients with COPD, control smokers, and non-smokers.
Thorax, 61 (2006), pp. 23-28
[21.]
P. Montuschi.
Exhaled breath condensate analysis in patients with COPD.
Clin Chim Acta, 356 (2005), pp. 22-34
[22.]
A. McLean, P.M. Warren, M. Gillooly, W. McNee, D. Lamb.
Microscopic and macroscopic measurements of emphysema: relation to carbon monoxide gas transfer.
Thorax, 47 (1992), pp. 144-149
[23.]
J.L. Izquierdo Alonso, M.A. Juretschke Moragues, A. Ramos Martos, et al.
Utility of complete dead space washout by real time gas analysis in the measurement of transfer factor in patients with chronic airflow limitation.
Respiration, 63 (1996), pp. 339-345
[24.]
P.G.A. Van Hoydonck, W.A. Wuyts, B.M. Vanaudenaerde, et al.
Quantitative analysis of 8-isoprostane and hydrogen peroxide in exhaled breath condensate.
Eur Respir J, 23 (2004), pp. 189-192
[25.]
R.W. Hyde.
I don’t know what you guys are measuring but you sue are measuring it.
Am J Respir Crit Care Med, 165 (2002), pp. 561-564
[26.]
I. Horvath, J. Hunt, P.J. Barnes, On behalf of the ATS/ERS Task Force on Exhaled Breath. ATS/ERS TASK FORCE.
Exhaled breath condensate: methodological recommendations and unresolved questions.
Eur Respir J, 26 (2005), pp. 523-548

Proyecto financiado por Neumomadrid y SESCAM GC03002.

Copyright © 2006. Sociedad Española de Neumología y Cirugía Torácica
Archivos de Bronconeumología
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?