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Editorial

Antimicrobial  Resistance  and  Pathobionts  in  Bronchiectasis:  An  Old
Problem  for  a  New  Era?

Bronchiectasis is characterized by chronic airway infection, per-

sistent inflammation, and tissue damage, creating an environment

portending toward antimicrobial resistance.1 While pathogens

have historically been the focus, the growing recognition of the

lung microbiome—including commensals and pathobionts—now

add complexity to  understanding resistance dynamics and ther-

apeutic outcomes.2,3 The advent of next-generation sequencing

technologies has transformed our ability to characterize resistance

at the strain level and is  increasingly being applied in  epidemio-

logical and clinical contexts.4 This has led to accelerated interests

in pathogen genomic research, including microbiome analysis and

its associated resistome. In some cases, in silico resistance pre-

diction is supplementing traditional culture-based susceptibility

testing, exemplified by its clinical application in Mycobacterium

tuberculosis.5 However, unlike M.  tuberculosis, whose closed pan-

genome and mutation-driven evolution make resistance prediction

more straightforward, pathogens with open pan-genomes such as

Pseudomonas aeruginosa,  Staphylococcus aureus, and Escherichia coli

pose greater challenges due to extensive recombination and hor-

izontal gene transfer, although bioinformatic prediction tools are

now making encouraging progress.4,6 Critically, established resis-

tance prediction tools and databases including ResFinder, the

Comprehensive Antibiotic Resistance Database (CARD) and the

Antibiotic Resistance Genes Database (ARDB) remain focused on

established pathogens, limiting their ability to  capture novel or

commensal-associated resistance determinants, and therefore only

offering a biased view of the broader resistome.7,8 Such challenges

are further exacerbated in metagenomic studies of the lung micro-

biome, where diverse and poorly characterized species coexist

alongside established pathogens, complicating resistance predic-

tion at the community level.

Advances in metagenomics now enables functional char-

acterization of the lung microbiome, offering insights into

resistome structure.9 In  bronchiectasis, antibiotic resistance

emerges through stepwise mutations disrupting antibiotic–drug

target interactions and the independent acquisition of exoge-

nous resistance.4 Although initially identified in human pathogens,

many horizontally acquired resistance determinants have ori-

gins in environmental or  neighboring commensal species, which

thus represent key microbial reservoirs of clinical resistance.8,10

Within the microbiome, the resistome therefore represents an

integrated, adaptable functional substructure that  responds to

antibiotic pressures. Here, sensitive organisms decline, while

resistant strains persist or  even expand, reshaping the ecosys-

tem based on functional composition. Resistome profiling may

therefore offer a  complementary view to taxonomic microbiome

analysis providing distinct analytical insights.11 High-throughput

sequencing—through short-read shotgun approaches and, increas-

ingly long-read technologies—now permits resistome assessments

at unprecedented scales.11,12 Advancing from inference, based

on taxonomy or isolate-specific sensitivity, metagenomics offers

a potential for therapeutic stratification, personalized antibiotic

regimens and improved stewardship tailored to  individualized

resistance landscapes. Recognizing the resistome as a  dynamic,

functional feature of the lung, and not merely a  reflection of

pathogen burden, therefore represents a major shift in  understand-

ing of the bronchiectasis milieu and the treatment response1,8

(Fig. 1).

Microbiome studies increasingly highlight the critical role

of community composition in bronchiectasis pathophysiology.2

Genera such as Neisseria,  Rothia, and Aggregatibacter, previously

unrecognized, have now emerged as important, with Neisseria

linked to adverse outcomes and Rothia and Aggregatibacter exert-

ing protective (anti-inflammatory) effects.3,13,14 Metagenomics

reveal that antimicrobial resistance genes are widespread across

pathogens, commensals and pathobionts, which collectively con-

tribute to a  “core” airway resistome, largely independent of disease

status.9 Analysis of the Cohort of Asian  and Matched European

Bronchiectasis (CAMEB) has revealed distinct “resistotypes” cor-

relating to clinical outcomes, where multidrug-dominant profiles

link with frequent exacerbations and poorer lung function.15

Such associations have been independently validated in  the

European EMBARC-BRIDGE cohort demonstrating that, despite

geographic variation in  microbiomes, associations between key

genera – pathogenic, commensal and pathobiont – including resis-

tance profiles remains largely conserved.16 Taken together, this

highlights the airway resistome as a  critical determinant of micro-

biome resilience, therapeutic response and disease trajectory in

bronchiectasis contrasting with the more traditional view that

commensals represent passive bystanders.

Predicting antibiotic resistance from lung microbiomes is

complicated by the presence of uncharacterized or ‘silent’ resis-

tance genes activated through promoter mutations, mobile

elements, or antibiotic selection.8,10 While extensively studied in

pathogens, these processes remain largely unexplored in commen-

sals. Here, it should be recognized that  resistance mechanisms

including CTX-M-type cephalosporinases, NDM-type metallo-�-

lactamases and MCR-1-mediated colistin resistance all originated

as uncharacterized genes within human and/or environmental bac-

terial communities, until their emergence in clinical pathogens
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Fig. 1. A conceptual framework for integrated resistome and microbiome models in clinical translation. Current models rely heavily on pathogen-centric ARG databases

and  culture-based methods focused on known resistance genes and organisms. These approaches are  limited by database bias, inability to detect cryptic or uncharacterized

resistance mechanisms, and poor resolution of complex community-level interactions. To overcome these gaps, expanded resistome profiling must incorporate commensals,

pathobionts, and environmental microbes, leveraging metagenomics, functional analyses, and machine learning/artificial intelligence approaches (ML/AI) to  iteratively

supplement the ARG knowledge base. Future predictive frameworks combining bacterial GWAS, reference-free models, and de novo tools such as alchemical free energy

modeling offer the potential to capture the full complexity of the airway resistome and guide precision therapy and trial design.

in  response to antibiotic selective pressures. Similarly, resis-

tance mechanisms likely exist (undetected) in commensal and

pathobiont constituents of the microbiome, silently influencing

community dynamics under antibiotic pressure. This, in  turn,

may have protective or  deleterious consequences depending

on whether resistance promotes microbiome resilience against

pathogenic invasion or facilitates an expansion of pathogenic

species that disrupts beneficial microbial airway interactions.17,18

Current diagnostic frameworks rarely culture or examine com-

mensal species, creating a  “blind spot” in resistome surveillance.7

Consequently, microbiome models lack complexity, due to inher-

ent biases in existing antimicrobial resistance gene (ARG) databases

and the limited ability to predict uncharacterized resistance mech-

anisms de novo from metagenomic data alone. Enriching curated

ARG databases with resistance genes from commensal and envi-

ronmental microbes, combined with innovative machine learning

and data-integrative approaches, will be critical in  overcoming

these limitations (Fig. 1). Here, metagenomics may  offer a  solu-

tion that guides therapeutic decision making allowing improved

patient stratification. To achieve this shift necessitates pathogen-

centric ARG databases to incorporate large-scale environmental

and commensal-pathobiont WGS  datasets coupled to  predictive

modeling which incorporates functional metagenomics, bacterial

genome-wide association studies (GWAS), and pioneering tools

such as alchemical free energy modeling to allow de novo pre-

diction of novel resistance variants.19,20 Reference-free machine

learning approaches, such as k-mer-based prediction offers an

additional pathway to uncover novel resistance elements within

the broader microbiome.21 Even if this is  to be realized, significant

computational challenges remain, including the need for scalable

de novo ARG discovery pipelines and integrated frameworks capa-

ble of combining sequence, structure, and phenotype predictions

into standardized clinically interpretable bioinformatic pipelines.7

Future models must address the confounding effects of  horizontal

gene transfer, genetic redundancy and complex community inter-

actions, while striving to support predictive systems applicable to

the broader microbiome as opposed to individual isolates.

As laboratory diagnostics and antibiotic sensitivity testing

become increasing genome-centric and digitized, knowledge of  the

resistome must expand to  improving clinical prediction. The resis-

tome likely has a key role in  understanding microbial survival under

antibiotic pressure and may  dictate how microbial ecosystems

establish, persist, and respond to therapy within the airway. Clinical

anomalies—such as the efficacy of azithromycin in treating P. aerug-

inosa exacerbations, the failure of targeted eradication therapies

and inconsistent outcomes in bronchiectasis trials such as ORBIT

and RESPIRE—suggest that  the mechanistic underpinnings of ther-

apeutic success (and failure) remain incompletely understood.22

Deeper integration of microbiome and resistome analyses will be

key to advancing our understanding of the anti-microbial thera-

peutic response, guiding novel drug development and optimizing

clinical trial design.22,23 Dynamic resistome profiling enables preci-

sion prescribing, early identification of high-risk microbiomes and

offers ‘real-time’ prediction of treatment outcome with increased

precision. By concurrently incorporating commensal resistomes

into therapeutic planning, we recognize its dual role as a  reser-

voir of resistance and potential mediator of microbial resilience.

Machine learning algorithms, predictive molecular modeling and

expanded environmental surveillance will further refine resistome

interpretation beyond the constraints of curated clinical databases.
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Importantly, significant hurdles remain: defining comprehensive

resistotypes, validating resistotype–phenotype associations and

translating these into routine practice. Realizing the potential

of the microbiome-resistome dynamic will necessitate moving

beyond the narrow focus on classical pathogens, and embracing

the complexity of microbial ecosystems, recognizing the resis-

tome in all forms as a  central determinant of clinical outcomes

in bronchiectasis. Characterization of the resistome in bronchiec-

tasis has significantly progressed in  recent times illustrating that

antibiotic resistance in chronic airways disease is a  multifacto-

rial phenomenon shaped by microbial ecology, host interaction

and dynamic environmental pressure. Fully appreciating this will

demand integrative models beyond genomic profiling and con-

sideration of airway commensals and pathobionts, including their

resistance mechanisms and survival strategies, as integrated com-

ponents of the broader microbiome (Fig. 1).
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