Journal Information
Vol. 59. Issue 9.
Pages 548-549 (September 2023)
Download PDF
More article options
Vol. 59. Issue 9.
Pages 548-549 (September 2023)
Full text access
What is the Best Antihypertensive Treatment for OSA?
José Gilvam A. Lima-Juniora, Ana Vitoria Vitoreti Martinsa, Luciano F. Dragera,b,
Corresponding author

Corresponding author.
a Unidade de Hipertensao, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
b Unidade de Hipertensao, Disciplina de Nefrologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
This item has received
Article information
Full Text
Download PDF
Tables (1)
Table 1. Summary on the studies that explored the effects of anti-hypertensive classes for patients with OSA.
Full Text

Obstructive sleep apnea (OSA), a common condition characterized by intrathoracic pressure reduction, sleep fragmentation and intermittent hypoxia due to repetitive upper airway obstructions during sleep, is a recognized cause of Hypertension (HTN).1 In clinical practice, however, it is difficult to prove causality, but the management of patients with co-morbid OSA and HTN may require an integrative approach. While the main treatments for OSA are well established regardless of presence of HTN (and may have a positive impact on blood pressure, BP, especially in those with resistant HTN),2 important questions related to the anti-hypertensive treatment deserve reflections: (1) Does OSA influence BP response to anti-hypertensive therapy?; (2) What is the best antihypertensive treatment in the OSA scenario? The first question was previously approached by our group in 2018.3 In an observational Cohort of 94 patients with HTN (55% of them with OSA) under a standard 30-day regimen of hydrochlorothiazide 25mg plus enalapril (20mg BID) or losartan (50mg BID), we evaluated the BP response up to 18 months of follow-up (no specific OSA treatment occurred during the investigation). Medical appointments were conducted regularly to perform medical adjustments in the antihypertensive medication regimens if necessary (in a blinded fashion). Compared with baseline, we did not observe significant differences between groups in 24-h BP, daytime systolic and diastolic BPs, or nighttime systolic BP at 6 and 18 months. The BP control rate at 24h (<130/80mmHg) was similar between the groups. Consistently, there were no differences in the number and class of antihypertensive medications prescribed during follow-up.3 Because patients in the aforementioned study used a combination of drugs, we speculated that multiple antihypertensive drugs acting in several pathways related to hypervolemia, the renin-angiotensin-aldosterone system, endothelial function, and sympathetic activation, among others, to mitigate the potential cardiovascular effects of OSA.3

The second question has a simple, but at the same time a challenge response: lessons learned from multiple studies revealed that continuous positive airway pressure (CPAP) per se is certainly not the best anti-hypertensive treatment. Overall, the modest BP lowering effects2 and the worst performance as compared to single drug therapy make this question apparently easy to address.4 However, in a recent retrospective analysis using insurance-based data, Revol and colleagues5 noted a significant reduction in the median cost of antihypertensive therapy and the use of two drug classes (calcium channels blockers, CCB and renin–angiotensin-system-acting agents) and a significant decrease in drug use for the same classes only in the OSA group. Despite the lack of data on OSA severity, BP values, and adherence to OSA therapy, these results suggest a specific effect related to OSA therapy, but the study design only generated hypothesis for future well-controlled prospective investigations.

The complex history relies on the comparison of anti-hypertensive classes. Based on the aforementioned pathways, in theory some of them may have advantages over others. Previous studies have analyzed the effects of beta-blockers, angiotensin receptor blockers (ARBs), angiotensin-converting enzyme inhibitors (ACE), CCB and spironolactone are summarized on the following Table 1. Overall, the reported studies comprised small sample of patients followed by a short-term period.6–10 In addition, some of the studies did not have an active comparator or focused on the timing of anti-hypertensive intake. In two randomized studies,7,8 beta-blockers had some secondary advantages over the other classes but the aforementioned limitations preclude any definitive conclusions. Based on the available evidence, distinct Cardiology Societies did not determine any preference anti-hypertensive treatment with co-morbid OSA is present in patients with OSA.11,12

Table 1.

Summary on the studies that explored the effects of anti-hypertensive classes for patients with OSA.

Author year  Study design  N  Compared drug classes  Follow-up  Concomitant OSA treatment?  Main results 
Mayer, 1990 (6)  Randomized  12  Metoprolol (100mg) or cilazapril (2.5mg)  8 days  No  Both caused a significant decrease in nocturnal BP and OSA severity. 
Kraiczi, 2000 (7)  Randomized  40  Several classes once per day:Atenolol (50mg);Amlodipine (5mg);Enalapril (20mg);Hydrochlorothiazide (25mg);Losartan (50mg)  6 weeks  No  The drugs had similar effects on daytime BP, although atenolol played a more efficient role in reducing mean nocturnal diastolic and systolic BP. 
Heitmann, 2010 (8)  Randomized  31  Nebivolol (5mg) or valsartan (80mg)  2 weeks  No  The two drugs effectively reduced systolic and diastolic BP, but nebivolol had a more significant impact on heart rate reduction when compared to valsartan 
Gaddam, 2010 (9)  Prospective open label  12  Spironolactone (25–50mg)  8 weeks  Yes  A significant reduction in the severity of OSA was observed in parallel to BP reduction. 
Kasiakogias, 2015 (10)  Prospective open label  41  Valsartan (160mg) and a fixed combination of Amlodipina (5mg) and Valsartan (160mg)  16 weeks  Yes  The evening dosing induced the greatest BP decrease. 

In conclusion, the best available evidence so far did not support any specific preference for the pharmacological anti-hypertensive treatment. Important to highlight that the evidence is limited, underscoring the need of well-designed, multicenter studies with large samples and long follow-up periods to expand our knowledge in the field. As suggested by a previous randomized study,4 combining treatment strategies seems to be the best option for improving sleep-related symptoms in parallel to decrease BP. Despite the significant controversies in the hypertension field related to the timing of anti-hypertensive intake,13,14 OSA patients might have more BP benefits using evening than morning dose, but definitive conclusions is lacking.

Conflict of interests

The authors state that they have no conflict of interests.

W.K.S. Barroso, C.I.S. Rodrigues, L.A. Bortolotto, M.A. Mota-Gomes, A.A. Brandão, A.D.M. Feitosa, et al.
Brazilian guidelines of hypertension – 2020.
Arq Bras Cardiol, 116 (2021), pp. 516-658
F. Fatureto-Borges, G. Lorenzi-Filho, L.F. Drager.
Effectiveness of continuous positive airway pressure in lowering blood pressure in patients with obstructive sleep apnea: a critical review of the literature.
Integr Blood Press Control, 9 (2016), pp. 43-47
F. Fatureto-Borges, R. Jenner, V. Costa-Hong, H.F. Lopes, S.H. Teixeira, E. Marum, et al.
Does obstructive sleep apnea influence blood pressure and arterial stiffness in response to antihypertensive treatment?.
Hypertension, 72 (2018), pp. 399-407
J.L. Pépin, R. Tamisier, G. Barone-Rochette, S.H. Launois, P. Lévy, J.P. Baguet.
Comparison of continuous positive airway pressure and valsartan in hypertensive patients with sleep apnea.
Am J Respir Crit Care Med, 182 (2010), pp. 954-960
B. Revol, C. Castelli, R. Ben Messaoud, A. Coffy, S. Bailly, I. Jullian-Desayes, et al.
Deprescribing antihypertensive drugs after starting OSA primary therapy?.
Sleep, 45 (2022), pp. zsac060
J. Mayer, U. Weichler, B. Herres-Mayer, H. Schneider, U. Marx, J.H. Peter.
Influence of metoprolol and cilazapril on blood pressure and on sleep apnea activity.
J Cardiovasc Pharmacol, 16 (1990), pp. 952-961
H. Kraiczi, J. Hedner, Y. Peker, L. Grote.
Comparison of atenolol, amlodipine, enalapril, hydrochlorothiazide, and losartan for antihypertensive treatment in patients with obstructive sleep apnea.
Am J Respir Crit Care Med, 161 (2000), pp. 1423-1428
J. Heitmann, T. Greulich, C. Reinke, U. Koehler, C. Vogelmeier, H.F. Becker, et al.
Comparison of the effects of nebivolol and valsartan on BP reduction and sleep apnoea activity in patients with essential hypertension and OSA.
Curr Med Res Opin, 26 (2010), pp. 1925-1932
K. Gaddam, E. Pimenta, S.J. Thomas, S.S. Cofield, S. Oparil, S.M. Harding, et al.
Spironolactone reduces severity of obstructive sleep apnoea in patients with resistant hypertension: a preliminary report.
J Hum Hypertens, 24 (2010), pp. 532-537
A. Kasiakogias, C. Tsioufis, C. Thomopoulos, I. Andrikou, D. Aragiannis, K. Dimitriadis, et al.
Evening versus morning dosing of antihypertensive drugs in hypertensive patients with sleep apnoea: a cross-over study.
J Hypertens, 33 (2015), pp. 393-400
L.F. Drager, G. Lorenzi-Filho, F.D. Cintra, R.P. Pedrosa, L.R.A. Bittencourt, D. Poyares, et al.
1° Posicionamento brasileiro sobre o impacto dos distúrbios de sono nas doenças cardiovasculares da sociedade brasileira de cardiologia.
Arq Bras Cardiol, 111 (2018), pp. 290-340
Y. Yeghiazarians, H. Jneid, J.R. Tietjens, S. Redline, D.L. Brown, N. El-Sherif, et al.
Obstructive sleep apnea and cardiovascular disease: a scientific statement from the American Heart Association.
Circulation, 144 (2021), pp. e56-e67
R.C. Hermida, J.J. Crespo, M. Domínguez-Sardiña, A. Otero, A. Moyá, M.T. Ríos, et al.
Bedtime hypertension treatment improves cardiovascular risk reduction: the Hygia Chronotherapy Trial.
Eur Heart J, 41 (2020), pp. 4565-4576
I.S. Mackenzie, A. Rogers, N.R. Poulter, B. Williams, M.J. Brown, D.J. Webb, et al.
Cardiovascular outcomes in adults with hypertension with evening versus morning dosing of usual antihypertensives in the UK (TIME study): a prospective, randomised, open-label, blinded-endpoint clinical trial.
Lancet, 400 (2022), pp. 1417-1425
Copyright © 2023. SEPAR
Archivos de Bronconeumología
Article options

Are you a health professional able to prescribe or dispense drugs?