Journal Information
Vol. 41. Issue 3.
Pages 141-152 (March 2005)
Share
Share
Download PDF
More article options
Vol. 41. Issue 3.
Pages 141-152 (March 2005)
Review Article
Full text access
Use of the Mouse to Unravel Allergic Asthma: a Review of the Pathogenesis of Allergic Asthma in Mouse Models and Its Similarity to the Condition in Humans
Visits
5944
R. Torresa, C. Picadob, F. de Moraa,
Corresponding author
fernando.demora@uab.es

Correspondence: Dr. F. de Mora. Departamento de Farmacología, de Terapéutica y de Toxicología. Universitad Autónoma de Barcelona. Edificio V. Campus Bellaterra. 08193 Cerdanyola del Vallés. Barcelona. España
a Departamento de Farmacología, de Terapéutica y de Toxicología, Universidad Autónoma de Barcelona, Cerdanyola del Vallés, Barcelona, Spain
b Departamento de Neumología, Hospital Clínic, Barcelona, Spain
This item has received
Article information
Full text is only aviable in PDF
REFERENCES
[1]
MI Asher, U Keil, HR Anderson, R Beasley, J Crane, F Martínez, et al.
International Study of Asthma and Allergies in Childhood (ISAAC): rationale and methods.
Eur Resp J., 8 (1995), pp. 483-491
[2]
Office of Press and Public Relations.
WHO: Bronchial asthma, World Health Organization, (2000),
[3]
J Martínez-Moratalla, E Almar, J Sunyer, J Ramos, A Pereira, F Payo, et al.
Estudio Europeo del Asma. Identificación y tratamiento de individuos con criterios epidemiólogicos de asma en adultos jóvenes de cinco Áreas españolas.
Arch Bronconeumol., 35 (1999), pp. 223-228
[4]
X Basagana, J Sunyer, JP Zock, M Kogevinas, I Urrutia, JA Maldonado, et al.
Incidence of asthma and its determinants among adults in Spain.
Am J Respir Crit Care Med., 164 (2001), pp. 1133-1137
[5]
H Nolte, V Backer, C Porsbjerg.
Environmental factors as a cause for the increase in allergic disease.
Ann Allergy Asthma Immunol., 87 (2001), pp. 7-11
[6]
DS Kim, AB Drake-Lee.
Infection, allergy and the hygiene hypothesis: historical perspective.
J Laryngol Otol., 117 (2003), pp. 946-950
[7]
A Nieto, E Álvarez-Cuesta, M Boquete, A Mazón, F de la Torre.
The cost of asthma treatment in Spain and rationalizing the expense.
J Invest Allergol Clin Immunol., 11 (2001), pp. 139-148
[8]
NN Jarjour, SP Peters, R Djukanovic, WJ Calhoun.
Investigative use of bronchoscopy in asthma.
Am J Respir Crit Care Med., 157 (1998), pp. 692-697
[9]
MS Kavuru, RA Dweik, MJ Thomassen.
Role of bronchoscopy in asthma research.
Clin Chest Med., 20 (1999), pp. 153-189
[10]
S Hoffjan, C Ober.
Present status on the genetic studies of asthma.
Curr Opin Immunol., 14 (2002), pp. 709-717
[11]
JR Brown, J Kleimberg, M Marini, G Sun, A Bellini, S Mattoli.
Kinetics of eotaxin expression and its relationship to eosinophil accumulation and activation in bronchial biopsies and bronchoalveolar lavage (BAL) of asthmatic patients after allergen inhalation.
Clin Exp Immunol., 114 (1998), pp. 137-146
[12]
Z Jaffar, K Roberts, A Pandit, P Linsley, R Djukanovic, ST Holgate.
B7 costimulation is required for IL-5 and IL-13 secretion by bronchial biopsy tissue of atopic asthmatic subjects in response to allergen stimulation.
Am J Respir Cell Mol Biol., 20 (1999), pp. 153-162
[13]
JR Johnson, RE Wiley, R Fattouh, FK Swirski, BU Gajewska, AJ Coyle, et al.
Continuous exposure to house dust mite elicits chronic airway inflammation and structural remodeling.
Am J Respir Crit Care Med., 169 (2004), pp. 378-385
[14]
A Motta, G Peltre, JA Dormans, CE Withagen, G Lacroix, F Bois, et al.
Phleum pratense pollen starch granules induce humoral and cell-mediated immune responses in a rat model of allergy.
Clin Exp Allergy, 34 (2004), pp. 310-314
[15]
TJ Toward, KJ Broadley.
Early and late bronchoconstrictions, airway hyper-reactivity, leucocyte influx and lung histamine and nitric oxide after inhaled antigen: effects of dexamethasone and rolipram.
Clin Exp Allergy, 34 (2004), pp. 91-102
[16]
MH Gascoigne, K Holland, CP Page, A Shock, M Robinson, R Foulkes, et al.
The effect of anti-integrin monoclonal antibodies on antigen-induced pulmonary inflammation in allergic rabbits.
Pulm Pharmacol Ther., 16 (2003), pp. 279-285
[17]
M Aoki, M Fukunaga, M Kitagawa, K Hayashi, T Morokata, G Ishikawa, et al.
Effect of a novel anti-inflammatory compound, YM976, on antigen-induced eosinophil infiltration into the lungs in rats, mice, and ferrets.
J Pharmacol Exp Ther., 295 (2000), pp. 1149-1155
[18]
EG Barrett, K Rudolph, LE Bowen, BA Muggenburg, DE Bice.
Effect of inhaled ultrafine carbon particles on the allergic airway response in ragweed-sensitized dogs.
Inhal Toxicol., 15 (2003), pp. 151-165
[19]
CR Norris, JR Byerly, KC Decile, RD Berghaus, WF Walby, ES Schelegle, et al.
Allergen-specific IgG and IgA in serum and bronchoalveolar lavage fluid in a model of experimental feline asthma.
Vet Immunol Immunopathol., 96 (2003), pp. 119-127
[20]
RJ Bischof, K Snibson, R Shaw, ENT Meeusen.
Induction of allergic inflammation in the lungs of sensitized sheep after local challenge with house dust mite.
Clin Exp Allergy, 33 (2003), pp. 367-375
[21]
C Fornhem, CG Peterson, M Dahlback, A Scheynius, K Alving.
Granulocyte function in the airways of allergen-challenged pigs: effects of inhaled and systemic budesonide.
Clin Exp Allergy, 26 (1996), pp. 1436-1448
[22]
MR van Scott, JL Hooker, D Ehrmann, Y Shibata, C Kukoly, K Salleng, et al.
Dust mite-induced asthma in cynomolgus monkeys.
J Appl Physiol., 96 (2004), pp. 1433-1444
[23]
RK Turlej, L Fievez, CF Sandersen, S Dogne, N Kirschvink, P Lekeux, et al.
Enhanced survival of lung granulocytes in an animal model of asthma: evidence for a role of GM-CSF activated STAT5 signalling pathway.
Thorax, 56 (2001), pp. 696-702
[24]
S Underwood, M Foster, D Raeburn, S Bottoms, JA Karlsson.
Time-course of antigen-induced airway inflammation in the guinea-pig and its relationship to airway hyperresponsiveness.
Eur Resp J., 8 (1995), pp. 2104-2113
[25]
H Isenberg-Feig, J Justice, A Keane-Myers.
Animal models of allergic asthma.
Curr Allergy Asthma Rep., 3 (2003), pp. 70-78
[26]
H Ali, KB Leung, FL Pearce, NA Hayes, JC Foreman.
Comparison of the histamine-releasing action of substance P on mast cells and basophils from different species and tissues.
Int Arch Allergy Appl Immunol., 79 (1986), pp. 413-418
[27]
A Wanner, RJ Mezey, ME Reinhart, P Eyre.
Antigen-induced bronchospasm in conscious sheep.
J Appl Physiol., 47 (1979), pp. 917-922
[28]
WM Abraham, JC Delehunt, L Yerger, B Marchette.
Characterization of a late phase pulmonary response after antigen challenge in allergic sheep.
Am Rev Respir Dis., 128 (1983), pp. 839-844
[29]
W Chen, MR Alley, BW Manktelow.
Airway inflammation in sheep with acute airway hypersensitivity to inhaled Ascaris suum.
Int Arch Allergy Appl Immunol., 96 (1991), pp. 218-223
[30]
W Chen, MR Alley, BW Manktelow.
Morphological and morphometric studies of the airways of sheep with acute airway hypersensitivity to inhaled Ascaris suum.
Int J Exp Pathol., 72 (1991), pp. 543-551
[31]
J Bosse, R Boileau, R Begin.
Chronic allergic airway disease in the sheep model: functional and lung-lavage features.
J Allergy Clin Immunol., 79 (1987), pp. 339-344
[32]
HG Johnson, BK Stout.
Late phase bronchoconstriction and eosinophilia as well as methacholine hyperresponsiveness in Ascaris-sensitive rhesus monkeys were reversed by oral administration of U-83836E.
Int Arch Allergy Immunol., 100 (1993), pp. 362-366
[33]
JP Brewer, AB Kisselgof, TR Martin.
Genetic variability in pulmonary physiological, cellular, and antibody responses to antigen in mice.
Am J Respir Crit Care Med., 160 (1999), pp. 1150-1156
[34]
U Herz, A Braun, R Ruckert, H Renz.
Various immunological phenotypes are associated with increased airway responsiveness.
Clin Exp Allergy, 28 (1998), pp. 625-634
[35]
K Shinagawa, M Kojima.
Mouse model of airway remodeling: Strain differences.
Am J Respir Crit Care Med., 168 (2003), pp. 959-967
[36]
EC Cates, BU Gajewska, S Goncharova, D Álvarez, R Fattouh, AJ Coyle, et al.
Effect of GM-CSF on immune, inflammatory, and clinical responses to ragweed in a novel mouse model of mucosal sensitization.
J Allergy Clin Immunol., 111 (2003), pp. 1076-1086
[37]
KG Tournoy, J Kips, C Schou, R Pauwels.
Airway eosinophilia is not a requirement for allergen-induced airway hyperresponsiveness.
Clin Exp Allergy, 30 (2000), pp. 79-85
[38]
SB Sarpong, L-Y Zhang, SR Kleeberger.
A novel mouse model of asthma.
Int Arch Allergy Immunol., 132 (2003), pp. 346-354
[39]
K Sakai, A Yokoyama, N Kohno, K Hiwada.
Effect of different sensitizing doses of antigen in a murine model of atopic asthma.
Clin Exp Allergy, 118 (1999), pp. 9-15
[40]
AH Clarke, WR Thomas, JM Rolland, C Dow, RM O'Brien.
Murine allergic respiratory responses to the major house dust mite allergen Der p 1.
Int Arch Allergy Immunol., 120 (1999), pp. 126-134
[41]
E Hamelmann, J Schwarze, K Takeda, A Oshiba, GL Larsen, CG Irvin, et al.
Noninvasive measurement of airway responsiveness in allergic mice using barometric plethysmography.
Am J Respir Crit Care Med., 156 (1997), pp. 766-775
[42]
J Temelkovski, SP Hogan, DP Shepherd, P Foster, RK Kumar.
An improved murine model of asthma: selective airway inflammation, epithelial lesions and increased methacholine responsiveness following chronic exposure to aerosolised allergen.
Thorax, 53 (1998), pp. 849-856
[43]
PG Holt, JE Batty, KJ Turner.
Inhibition of specific IgE responses in mice by re-exposure to inhaled antigen.
Immunology, 42 (1981), pp. 409-417
[44]
JD Sedgwick, PG Holt.
Down-regulation of immune responses to inhaled antigen: studies on the mechanism of induced suppression.
Immunology, 56 (1985), pp. 635-642
[45]
K Roberts, Z Jaffar.
Regulation of the adaptive immune response to inhaled allergens [editorial].
Clin Exp Allergy, 32 (2002), pp. 343-344
[46]
FK Swirski, D Sajic, CS Robbins, BU Gajewska, M Jordana.
Chronic exposure to innocuous antigen in sensitized mice leads to suppressed airway eosinophilia that is reversed by GMC-SF.
J Immunol., 169 (2002), pp. 3499-3506
[47]
SJ McMillan, CM Lloyd.
Prolonged allergen challenge in mice leads to persistent airway remodelling.
Clin Exp Allergy, 34 (2004), pp. 497-507
[48]
E Hamelmann, K Takeda, A Oshiba, EW Gelfand.
Role of IgE in the development of allergic airway inflammation and airway hyperresponsiveness-a murine model.
Allergy, 54 (1999), pp. 297-305
[49]
JS Fedan, MR van Scott, AR Johnson.
Pharmacological techniques for the in vitro study of airways.
J Pharmacol Toxicol Methods, 45 (2001), pp. 159-174
[50]
TR Martin, NP Gerard, SJ Galli, JM Drazen.
Pulmonary responses to bronchoconstrictor agonists in the mouse.
J Appl Physiol., 64 (1988), pp. 2318-2323
[51]
K Takeda, E Hamelmann, A Joetham, LD Shultz, GL Larsen, CG Irvin, et al.
Development of eosinophilic airway inflammation and airway hyperresponsiveness in mast cell-deficient mice.
J Exp Med., 186 (1997), pp. 449-454
[52]
JM Drazen, PW Finn, GT De Sanctis.
Mouse models of airway hyperresponsiveness: physiological basis of observed outcomes and analysis of selected examples using these outcome indicators.
Annu Rev Physiol., 61 (1999), pp. 593-625
[53]
LK Lundblad, CG Irvin, A Adler, JHT Bates.
A reevaluation of the validity of unrestrained plethysmography in mice.
J Appl Physiol., 93 (2002), pp. 1198-1207
[54]
Z Hantos, V Brusasco.
Assessment of respiratory mechanics in small animals: the simpler the better?.
J Appl Physiol., 93 (2002), pp. 1196-1197
[55]
W Mitzner, C Tankersley.
Interpreting Penh in mice.
J Appl Physiol., 94 (2003), pp. 828-832
[56]
MMC Williams, SJ Galli.
Mast cells can amplify airway reactivity and features of chronic inflammation in an asthma model in mice.
J Exp Med., 192 (2000), pp. 455-462
[57]
AD Kraneveld, HP van der Kleij, M Kool, AH van Houwelingen, AC Weitenberg, FA Redegeld, et al.
Key role for mast cells in nonatopic asthma.
J Immunol., 169 (2002), pp. 2044-2053
[58]
MA Carey, DR Germolec, JA Bradbury, RA Gooch, MP Moorman, GP Flake, et al.
Accentuated T helper type 2 airway response after allergen challenge in cyclooxygenase-1-/- but not cyclooxygenase-2-/- mice.
Am J Respir Crit Care Med., 167 (2003), pp. 1509-1515
[59]
GS Whitehead, JK Walker, KG Berman, WM Foster, DA Schwartz.
Allergen-induced airway disease is mouse strain dependent.
Am J Physiol Lung Cell Mol Physiol., 285 (2003), pp. L32-L42
[60]
BN Melgert, DS Postma, M Geerlings, MA Luinge, PA Klok, BW van der Strate, et al.
Short-term smoke exposure attenuates ovalbumin-induced airway inflammation in allergic mice.
Am J Respir Cell Mol Biol., 30 (2004), pp. 880-885
[61]
P Jungsuwadee, G Dekan, G Stingl, M Epstein.
Recurrent aerosol antigen exposure induces distinct patterns of experimental allergic asthma in mice.
Clin Immunol., 102 (2002), pp. 145-153
[62]
N Mojtabavi, G Dekan, G Stingl, M Epstein.
Long-lived Th2 memory in experimental allergic asthma.
J Immunol., 169 (2002), pp. 4788-4796
[63]
DC Grootendorst, JK Sont, LN Willems, JC Kluin-Nelemans, JH van Krieken, M Veselic-Charvat, et al.
Comparison of inflammatory cell counts in asthma: induced sputum vs bronchoalveolar lavage and bronchial biopsies.
Clin Exp Allergy, 27 (1997), pp. 769-779
[64]
K Takeda, A Haczku, J Lee, CG Irvin, EW Gelfand.
Strain dependence of airway hyperresponsiveness reflects differences in eosinophil localization in the lung.
Am J Physiol Lung Cell Mol Physiol., 281 (2001), pp. L394-L402
[65]
BN Lambrecht, LS van Rijt, H Kuipers.
Immunology of eosinophilic airway inflammation: what the animal models teach us.
The immunological basis of asthma, pp. 343-365
[66]
DS Stelts, RW Egan, A Falcone, CG Garlisi, GJ Gleich, W Kreutner, et al.
Eosinophils retain their granule major basic protein in a murine model of allergic pulmonary inflammation.
Am J Respir Cell Mol Biol., 18 (1998), pp. 463-470
[67]
KH Banner, W Paul, CP Page.
Ovalbumin challenge following immunization elicits recruitment of eosinophils but not bronchial hyperresponsiveness in guinea-pigs: time course and relationship to eosinophil activation status.
Pulm Pharmacol., 9 (1996), pp. 179-187
[68]
JR MacKenzie, J Mattes, LA Dent, P Foster.
Eosinophils promote allergic disease of the lung by regulating CD4+Th2 lymphocyte function.
J Immunol., 167 (2001), pp. 3146-3155
[69]
J Mattes, M Yang, S Mahalingam, J Kuehr, DC Webb, L Simson, et al.
Intrinsic defect in T cell production of interleukin (IL)13 in the absence of both IL-5 and eotaxin precludes the development of eosinophilia and airways hyperreactivity in experimental asthma.
J Exp Med., 195 (2002), pp. 1433-1444
[70]
R Alam, WW Busse.
The eosinophil-Quo vadis?.
J Allergy Clin Immunol., 113 (2004), pp. 38-42
[71]
SS Saini.
Immune functions of mast cells and basophils.
The immunological basis of asthma, pp. 121-145
[72]
T Koshino, Y Arai, Y Miyamoto, Y Sano, M Itami, S Teshima, et al.
Airway basophil and mast cell density in patients with bronchial asthma: relationship to bronchial hyperresponsiveness.
J Asthma, 33 (1996), pp. 89-95
[73]
NN Jarjour, WJ Calhoun, LB Schwartz, WW Busse.
Elevated bronchoalveolar lavage fluid histamine levels in allergic asthmatics are associated with increased airway obstruction.
Am Rev Respir Dis., 144 (1991), pp. 83-87
[74]
TB Casale, D Wood, HB Richerson, S Trapp, WJ Metzger, D Zavala, et al.
Elevated bronchoalveolar lavage fluid histamine levels in allergic asthmatics are associated with methacholine bronchial hyperresponsiveness.
J Clin Invest., 79 (1987), pp. 1197-1203
[75]
DH Broide, GJ Gleich, AJ Cuomo, DA Coburn, EC Federman, LB Schwartz, et al.
Evidence of ongoing mast cell and eosinophil degranulation in symptomatic asthma airway.
J Allergy Clin Immunol., 88 (1991), pp. 637-648
[76]
H Hirai, K Tanaka, O Yoshie, K Ogawa, K Kenmotsu, Y Takamori, et al.
Prostaglandin D2 selectively induces chemotaxis in T helper type 2 cells, eosinophils, and basophils via seven-transmembrane receptor CRTH.
J Exp Med., 193 (2001), pp. 255-261
[77]
T Matsuoka, M Hirata, H Tanaka, Y Takahashi, T Murata, K Kabashima, et al.
Prostaglandin D2 as a mediator of allergic asthma.
Science, 287 (2000), pp. 2013-2017
[78]
TT Kung, DS Stelts, JA Zurcher, H Jones, SP Umland, W Kreutner, et al.
Mast cells modulate allergic pulmonary eosinophilia in mice.
Am J Respir Cell Mol Biol., 12 (1995), pp. 404-409
[79]
RK Kumar, P Foster.
Murine model of chronic human asthma.
Immunol Cell Biol., 79 (2001), pp. 141-144
[80]
J Bousquet, PK Jeffery, WW Busse, M Johnson, AM Vignola.
Asthma. From bronchoconstriction to airways inflammation and remodeling.
Am J Respir Crit Care Med., 161 (2000), pp. 1720-1745
[81]
WW Busse, J Elias, D Sheppard, S Banks-Schlegel.
Airway remodeling and repair.
Am J Respir Crit Care Med., 140 (1999), pp. 1745-1753
[82]
JA Rankin, DE Picarella, GP Geba, UA Teman, B Prasad, B DiCosmo, et al.
Phenotypic and physiologic characterization of transgenic mice expressing interleukin-4 in the lung: lymphocytic and eosinophilic inflammation without airway hyperreactivity.
Proc Nat Acad Sci., 93 (1996), pp. 7821-7825
[83]
J Lee, MP McGarry, SC Farmer, KL Denzler, KA Larson, PE Carrigan, et al.
Interleukin-5 expression in the lung epithelium of transgenic mice leads to pulmonary changes pathognomonic of asthma.
J Exp Med., 188 (1997), pp. 1307-1320
[84]
Z Zhu, RJ Homer, Z Wang, Q Chen, GP Geba, J Wang, et al.
Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production.
J Clin Invest., 103 (1999), pp. 779-788
[85]
RK Kumar, C Herbert, P Foster.
Expression of growth factors by airway epithelial cells in a model of chronic asthma: regulation and relationship to subepithelial fibrosis.
Clin Exp Allergy, 34 (2004), pp. 567-575
[86]
CG Garlisi, A Falcone, TT Kung, D Stelts, KJ Pennline, AJ Beavis, et al.
T cells are necessary for Th2 cytokine production and eosinophil accumulation in airways of antigen-challenged allergic mice.
Clin Immunol Immunopathol., 75 (1995), pp. 75-83
[87]
PS Foster, SP Hogan, AJ Ramsay, KI Matthaei, IG Young.
Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model.
J Exp Med., 183 (1996), pp. 195-201
[88]
SP Hogan, A Koskinen, KI Matthaei, IG Young, PS Foster.
Interleukin-5-producing CD4+ T cells play a pivotal role in aeroallergen-induced eosinophilia, bronchial hyperreactivity, and lung damage in mice.
Am J Respir Crit Care Med., 157 (1998), pp. 210-218
[89]
RSJ Peebles, R Dworski, RD Collins, K Jarzecka, DB Mitchell, BS Graham, et al.
Cyclooxygenase inhibition increases interleukin 5 and interleukin 13 production and airway hyperresponsiveness in allergic mice.
Am J Respir Crit Care Med., 162 (2000), pp. 67681
[90]
G Grunig, M Warnock, AE Wakil, R Venkayya, F Brombacher, DM Rennick, et al.
Requirement for IL-13 independently of IL-4 in experimental asthma.
Science, 282 (1998), pp. 2261-2263
[91]
J Mattes, M Yang, A Siqueira, K Clark, J McKenzie, AN McKenzie, et al.
IL-13 induces airways hyperreactivity independently of the IL-4R alpha chain in the allergic lung.
J Immunol., 167 (2001), pp. 1683-1692
[92]
RK Kumar, C Herbert, M Yang, AM Koskinen, AN McKenzie, P Foster.
Role of interleukin-13 in eosinophil accumulation and airway remodelling in a mouse model of chronic asthma.
Clin Exp Allergy, 32 (2002), pp. 1104-1111
[93]
L Cohn, RJ Homer, A Marinov, J Rankin, K Bottomly.
Induction of airway mucus production by T helper 2 (Th2) cells: a critical role for interleukin 4 in cell recruitment but not mucus production.
J Exp Med., 186 (1997), pp. 1737-1747
[94]
PS Foster, Y Ming, KI Matthei, IG Young, J Temelkovski, RK Kumar.
Dissociation of inflammatory and epithelial responses in a murine model of chronic asthma.
Lab Invest., 80 (2000), pp. 65562
[95]
ML Kowalski, R Pawliczak, J Wozniak, K Siuda, M Poniatowska, J Iwaszkiewicz, et al.
Differential metabolism of arachidonic acid in nasal polyp epithelial cells cultured from aspirin-sensitive and aspirin-tolerant patients.
Am J Respir Crit Care Med., 161 (2000), pp. 391-398
[96]
J Mullol, JC Fernández-Morata, J Roca-Ferrer, L Pujols, A Xaubet, P Benítez, et al.
Cyclooxygenase 1 and cyclooxygenase 2 expression is abnormally regulated in human nasal polyps.
J Allergy Clin Immunol., 109 (2002), pp. 824-830
[97]
LS Chambers, JL Black, Q Ge, SM Carlin, WW Au, M Poniris, et al.
PAR-2 activation, PGE2, and COX-2 in human asthmatic and nonasthmatic airway smooth muscle cells.
Am J Physiol Lung Cell Mol Physiol., 285 (2003), pp. L619-LL27
[98]
C Picado, G Bioque, J Roca-Ferrer, L Pujols, J Mullol, P Benítez, et al.
Nuclear factor-kappa B activity is down-regulated in nasal polyps from aspirin-sensitive asthmatics.
Allergy, 58 (2003), pp. 122-126
[99]
SH Gavett, SL Madison, PC Chulada, PE Scarborough, W Qu, JE Boyle, et al.
Allergic lung responses are increased in prostaglandin H synthase-deficient mice.
J Clin Invest., 104 (1999), pp. 721-732
[100]
RSJ Peebles, K Hashimoto, JD Morrow, R Dworski, RD Collins, Y Hashimoto, et al.
Selective cyclooxygenase-1 and -2 inhibitors each increase allergic inflammation and airway hyperresponsiveness in mice.
Am J Respir Crit Care Med., 165 (2002), pp. 1154-1160
[101]
PR Colville-Nash, DW Gilroy.
Potential adverse effects of cyclooxygenase-2 inhibition: evidence from animal models of inflammation.
BioDrugs, 15 (2001), pp. 1-9
[102]
T Kobayashi, T Miura, T Haba, M Sato, I Serizawa, H Nagai, et al.
An essential role of mast cells in the development of airway hyperresponsiveness in a murine asthma model.
J Immunol., 164 (2000), pp. 3855-3861
[103]
PM O'Byrne.
Leukotriene bronchoconstriction induced by allergen and exercise.
Am J Respir Crit Care Med., 161 (2000), pp. S68S72
[104]
A Hamilton, I Faiferman, P Stober, RM Watson, PM O'Byrne.
Pranlukast, a cysteinyl leukotriene receptor antagonist, attenuates allergen-induced early- and late-phase bronchoconstriction and airway hyperresponsiveness in asthmatic subjects.
J Allergy Clin Immunol., 102 (1998), pp. 177-183
[105]
WRJ Henderson, LO Tang, SJ Chu, SM Tsao, GK Chiang, F Jones, et al.
A role for cysteinyl leukotrienes in airway remodeling in a mouse asthma model.
Am J Respir Crit Care Med., 165 (2002), pp. 108-116
[106]
B Burrows, FD Martínez, M Halonen, RA Barbee, MG Cline.
Association of asthma with serum IgE levels and skin-test reactivity to allergens.
N Engl J Med., 320 (1989), pp. 212-217
[107]
M Humbert, JA Grant, L Taborda-Barata, SR Durham, R Pfister, G Menz, et al.
High-affinity IgE receptor (FcepsilonRI)-bearing cells in bronchial biopsies from atopic and nonatopic asthma.
Am J Respir Crit Care Med., 153 (1996), pp. 1931-1937
[108]
AM Campbell, I Vachier, P Chánez, AM Vignola, B Lebel, J Kochan, et al.
Expression of the high-affinity receptor for IgE on bronchial epithelial cells of asthmatics.
Am J Respir Cell Mol Biol., 19 (1998), pp. 92-97
[109]
SI Mayr, RI Zuberi, M Zhang, J De Sousa-Hitzler, K Ngo, Y Kuwabara, et al.
IgE-dependent mast cell activation potentiates airway responses in murine asthma models.
J Immunol., 169 (2002), pp. 2061-2068
[110]
H Milgrom, RBJ Fick, JQ Su, JD Reimann, RK Bush, ML Watrous, et al.
Treatment of allergic asthma with monoclonal antiIgE antibody. rhuMAb-E25 Study Group.
N Engl J Med., 341 (1999), pp. 1966-1973
[111]
PD Mehlhop, M van de Rijn, AB Goldberg, JP Brewer, VP Kurup, TR Martin, et al.
Allergen-induced bronchial hyperreactivity and eosinophilic inflammation occur in the absence of IgE in a mouse model of asthma.
Proc Nat Acad Sci., 94 (1997), pp. 1344-1349
[112]
SP Hogan, A Mould, H Kikutani, AJ Ramsay, P Foster.
Aeroallergen-induced eosinophilic inflammation, lung damage, and airways hyperreactivity in mice can occur independently of IL-4 and allergen-specific immunoglobulins.
J Clin Invest., 99 (1997), pp. 1329-1339
[113]
M Korsgren, JS Erjefalt, O Korsgren, F Sundler, CGA Persson.
Allergic eosinophil-rich inflammation develops in lungs and airways of B cell-deficient mice.
J Exp Med., 185 (1997), pp. 885-892
[114]
JA Wilder, DD Collie, BS Wilson, DE Bice, CR Lyons, MF Lipscomb.
Dissociation of airway hyperresponsiveness from immunoglobulin E and airway eosinophilia in a murine model of allergic asthma.
Am J Respir Cell Mol Biol., 20 (1999), pp. 1326-1334
[115]
GG Brusselle, JC Kips, JH Taverner, JG Van der Heyden, CA Cuvelier, RA Pauwels, et al.
Attenuation of allergic airway inflammation in IL-4 deficient mice.
Clin Exp Allergy, 24 (1994), pp. 73-80
[116]
JA MacLean, A Sauty, AD Luster, JM Drazen, GT De Sanctis.
Antigen-induced airway hyperresponsiveness, pulmonary eosinophilia, and chemokine expression in B cell-deficient mice.
Am J Respir Cell Mol Biol., 20 (1999), pp. 379-387
[117]
EW Gelfand.
Pro: mice are a good model of human airway disease.
Am J Respir Crit Care Med., 166 (2002), pp. 5-6
[118]
CG Persson.
Con: mice are not a good model of human airway disease.
Am J Respir Crit Care Med., 166 (2002), pp. 6-7
[119]
Y Zhang, J Lefort, V Kearsey, JR Lapa e Silva, WO Cookson, BB Vargaftig.
A genome-wide screen for asthma-associated quantitative trait loci in a mouse model of allergic asthma.
Hum Mol Genet., 8 (1999), pp. 601-605
[120]
M Malm-Erjefalt, CG Persson, JS Erjefalt.
Degranulation status of airway tissue eosinophils in mouse models of allergic airway inflammation.
Am J Respir Cell Mol Biol., 24 (2001), pp. 352-359
[121]
KL Denzler, MT Borchers, JR Crosby, G Cieslewicz, EM Hines, JP Justice, et al.
Extensive eosinophil degranulation and peroxidase-mediated oxidation of airway proteins do not occur in a mouse ovalbumin-challenge model of pulmonary inflammation.
J Immunol., 167 (2001), pp. 1672-1682
[122]
CG Persson, JS Erjefalt.
Degranulation in eosinophils in human, but not in mouse, airways.
Allergy, 54 (1999), pp. 1230-1232
[123]
M Epstein.
Do mouse models of allergic asthma mimic clinical disease?.
Int Arch Allergy Immunol., 133 (2004), pp. 84-100
Copyright © 2005. Sociedad Española de Neumología y Cirugía Torácica (SEPAR)
Archivos de Bronconeumología
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?