Journal Information
Vol. 42. Issue 10.
Pages 526-532 (October 2006)
Share
Share
Download PDF
More article options
Vol. 42. Issue 10.
Pages 526-532 (October 2006)
Original Articles
Full text access
Use of Gene Therapy in a Subcutaneous Murine Model of Lung Cancer
Visits
5135
Manuel Rodrigo Garzóna,
Corresponding author
manrrogar@yahoo.es

Correspondence: Dr. M. Rodrigo Garzón. P.° de la Estación, 42, 9.° B. 23008 Jaén. España
, Íñigo Tirapu Fernández de la Cuestab, Ainhoa Arina Iraetab, Miguel Noel Centelles Llorenteb, Javier Zulueta Francésa
a Servicio de Neumología, Clínica Universitaria de Navarra, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Navarra, Spain
b Departamento de Medicina Interna, Clínica Universitaria de Navarra, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Navarra, Spain
This item has received
Article information
Abstract
Bibliography
Download PDF
Statistics
Objective

To assess the effectiveness of in vivo gene therapy to treat subcutaneous tumors generated from murine lung cancer cells.

Material and Methods

C57BL/6 mice received subcutaneus injections of 5×105 cells from the murine Lewis lung cancer cell line. By 10 days, subcutaneous tumors of approximately 5 mm diameter were formed. At that point, treatment was provided by intratumor injection of a replication-defective recombinant adenovirus carrying the gene for thymidine kinase (AdCMV-Tk) or interleukin (IL) 12 (AdCMV-IL12), or by injection of syngeneic dendritic cells previously transduced with adenovirus containing the IL-12 gene (DC-IL12). Control groups were treated with saline or adenovirus containing the gene for β-galactosidase (AdCMV-LacZ), which functions as a reporter gene and does not have a therapeutic effect. The number of animals in each group ranged from 14 to 25 in experiments using adenovirus and from 10 to 12 in experiments using dendritic cells. Tumor size was followed for 3 weeks in the case of treatment with adenovirus and 4 weeks for treatment with dendritic cells.

Results

A significant reduction in subcutaneous tumor growth was observed in the groups treated with AdCMV-Tk, AdCMV-IL12, and DC-IL12 compared with control groups treated with saline or AdCMV-LacZ. The difference was statistically significant from day 7 of treatment in the AdCMV-Tk group, from day 9 in the AdCMV-IL12 group, and from day 10 in the DC-IL12 group, and in all cases it was maintained until the end of the follow-up period.

Conclusions

Gene therapy with AdCMV-Tk, AdCMV-IL12, or DC-IL12 is effective in our model of subcutaneous tumors arising from cells of the Lewis lung cancer cell line. The treatment leads to a significant reduction in tumor growth compared with control groups.

Key words:
Gene therapy
Lung cancer
Adenovirus
Thymidine kinase
Interleukin 12
Dendritic cells
Objetivo

Demostrar la utilidad del tratamiento génico (TG) in vivo en los tumores subcutáneos de cáncer de pulmon murino.

Material y métodos

Se inyectaron a ratones C57BL/6 por vía subcutánea 5 × 105 células de la línea de cáncer de pulmón murino de Lewis. A los 10 días se formaron tumores subcutáneos de unos 5 mm de diámetro. En ese momento se trataron mediante inyección intratumoral con un adenovirus recombinante defectivo portador del gen de la timidincinasa (AdCMV-Tk), o del gen de la interleucina 12 (AdCMV-IL12), o con células dendríticas (CD) singénicas transducidas con el gen de la interleucina 12 (CD-IL12). Como grupos control se incluyeron tumores tratados con suero salino o con un adenovirus con el gen de la β-galactosidasa (AdCMV-LacZ), que es un gen indicador sin efecto terapéutico. El número de animales por grupo osciló entre 14 y 25 con adenovirus y entre 10 y 12 con CD. A continuación se realizó un seguimiento del tamaño tumoral desde el primer día de tratamiento hasta la tercera (adenovirus) o cuarta (CD) semanas para comparar su evolución.

Resultados

Se objetivó una disminución significativa del crecimiento de los tumores subcutáneos en los grupos tratados con AdCMV-Tk, AdCMV-IL12 y CD-IL12 comparados con los grupos control tratados con suelo salino y AdCMV-LacZ. En el grupo AdCMV-Tk esta diferencia fue estadísticamente significativa desde el día 7, en AdCMV-IL12 desde el día 9 y en CD-IL12 desde el día 10 y se mantuvo hasta el final del seguimiento.

Conclusions

El TG con AdCMV-Tk, AdCMV-IL12 o CD-IL12 es efectivo en nuestro modelo de tumores subcutáneos de células de carcinoma pulmonar de Lewis, ya que es capaz de disminuir su tasa de crecimiento de forma significativa respecto a los grupos de control.

Palabras clave:
Tratamiento génico
Cáncer de pulmón
Adenovirus
Timidincinasa
Interleucina 12
Células dendríticas
Full text is only available in PDF
REFERENCES
[1]
GM Rubanyi.
The future of human gene therapy.
Mol Aspects Med, 22 (2001), pp. 113-142
[2]
BJ Carter.
Gene therapy as drug development.
Mol Ther, 1 (2000), pp. 211-212
[3]
SM Albelda, R Wiewrodt, JB Zuckerman.
Gene therapy for lung disease: hype or hope?.
Ann Intern Med, 132 (2000), pp. 649-660
[4]
JA George.
Gene therapy progress and prospects: adenoviral vectors.
Gene Ther, 10 (2003), pp. 1135-1141
[5]
MD Brown, AG Schätzlein, IF Uchegbu.
Gene delivery with synthetic (non viral) carriers.
Int J Pharm, 229 (2001), pp. 1-21
[6]
T Shenk, et al.
Adenoviridae: the viruses and their replication.
Fundamental virology, pp. 2111-2171
[7]
C Giovanni, P Nanni, G Forni.
The prospects for cancer gene therapy.
Int J Immunopharmacol, 22 (2000), pp. 1025-1032
[8]
HC Hwang, WR Smythe, AA Elshami, JC Kucharczuk, KM Amin, JP Williams, et al.
Gene therapy using adenovirus carrying the herpes simplex-thymidine kinase gene to treat in vivo models of human malignant mesothelioma and lung cancer.
Am J Respir Cell Mol Biol, 13 (1995), pp. 7-16
[9]
MP Colombo, G Trinchieri.
Interleukin-12 in antitumor immunity and immunotherapy.
Cytokine & Growth Factor Rev, 13 (2002), pp. 155-168
[10]
K Inaba, RM Steinman, WC van Voorhis, S Muramatsu.
Dendritic cells are critical accessory cells for thymus-dependent antibody responses in mouse and in man.
Proc Natl Acad Sci USA, 80 (1983), pp. 6041-6045
[11]
M Rescigno, F Granucci, S Citterio, M Foti, P Ricciardi-Castagnoli.
Coordinated events during bacteria-induced DC maturation.
Immunol Today, 20 (1999), pp. 200-204
[12]
Y Nishioka, M Hirao, PD Robbins, MT Lotze, H Tahara.
Induction of systemic and therapeutic antitumor immunity using intratumoral injection of dendritic cells genetically modified to express interleukin 12.
Cancer Res, 59 (1999), pp. 4035-4041
[13]
C Qian, R Bilbao, O Bruña, J Prieto.
Induction of sensitivity to ganciclovir in human hepatocellular carcinoma cells by adenovirus-mediated gene transfer of herpes simplex virus thymidine kinase.
Hepatology, 22 (1995), pp. 118-123
[14]
G Mazzolini, C Qian, X Xie, Y Sun, JJ Lasarte, M Drozdzik, et al.
Regression of colon cancer and induction of antitumor immunity by intratumoral injection of adenovirus expressing interleukin-12.
Cancer Gene Ther, 6 (1999), pp. 514-522
[15]
I Melero, M Duarte, J Ruiz, B Sangro, JC Galofré, G Mazzolini, et al.
Intratumoral injection of bone-marrow derived dendritic cells engineered to produce interleukin-12 induces complete regression of establish murine transplantable colon adenocarcinomas.
Gene Ther, 6 (1999), pp. 1779-1784
[16]
DM Parkin, FI Bray, SS Devesa.
Cancer burden in the year 2000. The global picture.
Eur J Cancer, 37 (2001), pp. 4-66
[17]
JM Bergelson, JA Cunningham, G Droguett, EA Kurt-Jones, A Krithivas, JS Hong, et al.
Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5.
Science, 275 (1997), pp. 1320-1323
[18]
TJ Wickham, P Mathias, DA Cheresh, GR Nemerow.
Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment.
Cell, 73 (1993), pp. 309-319
[19]
K Takayama, H Ueno, X-H Pei, Y Nakanishi, J Yatsunami, N Hara.
The levels of integrin alpha vs beta 5 may predict the susceptibility to adenovirus-mediated gene transfer in human lung cancer cells.
Gene Ther, 5 (1998), pp. 361-368
[20]
RK Batra, JC Olsen, RJ Pickles, DK Hoganson, RC Boucher.
Transduction of non-small cell lung cancer cells by adenoviral and retroviral vectors.
Am J Respir Cell Mol Biol, 18 (1998), pp. 402-410
[21]
Y-L Kwong, S-H Chen, K Kosai, M Finegold, SLC Woo.
Combination therapy with suicide and cytokine genes for hepatic metastases of lung cancer.
Chest, 112 (1997), pp. 1332-1337
[22]
M Mesnil, H Yamasaki.
Bystander effect in herpes simplex virus-thymidine kinase/ganciclovir cancer gene therapy: role of gap-junctional intercellular communication.
Cancer Res, 60 (2000), pp. 3989-3999
[23]
JC Cusack, FR Spitz, D Nguyen, WW Zhang, RJ Cristiano, JA Roth.
High levels of gene transduction in human lung tumors following intralesional injection of recombinant adenovirus.
Cancer Gene Ther, 3 (1996), pp. 245-249
[24]
Y Nagamachi, M Tani, K Shimizu, T Yoshida, J Yokota.
Suicidal gene therapy for pleural metastasis of lung cancer by liposome-mediated transfer of herpes simplex virus thymidine kinase gene.
Cancer Gene Ther, 6 (1999), pp. 546-553
[25]
F Cavallo, P Signorelli, M Giovarelli, P Musiani, A Modesti, MJ Brunda, et al.
Antitumor efficacy of adenocarcinoma cells engineered to produce interleukin 12 (IL-12) or other cytokines compared with exogenous IL-12.
J Natl Cancer Inst, 89 (1997), pp. 1049-1058
[26]
Y Nasu, CH Bangma, GW Hull, HM Lee, J Hu, J Wang, et al.
Adenovirus-mediated interleukin-12 gene therapy for prostate cancer: suppression of orthotopic tumor growth and preestablished lung metastases in an orthotopic model.
Gene Ther, 6 (1999), pp. 338-349
[27]
H Sumimoto, K Tani, Y Nakazaki, T Tanabe, H Hibino, MS Wu, et al.
Superiority of interleukin-12-transduced murine lung cancer cells to GM-CSF or B7-1 (CD80) transfectants for therapeutic antitumor immunity in syngenic immunocompetent mice.
Cancer Gene Ther, 5 (1998), pp. 29-37
[28]
CM Bacon, EF Petricoin, JR Ortaldo, RC Rees, AC Lamer, JA Johnston, et al.
Interleukin 12 induces tyrosine phosphorylation and activation of STAT4 in human lymphocytes.
Proc Natl Acad Sci USA, 92 (1995), pp. 7307-7311
[29]
JM Specht, G Wang, MT Do, JS Lam, RE Royal, ME Reeves, et al.
Dendritic cells retrovirally transduced with a model antigen gene are therapeuticaly effective against established pulmonary metastases.
J Exp Med, 186 (1997), pp. 1213-1221
[30]
JA Roth, SF Grammer.
Gene replacement therapy for non-small cell lung cancer: a review.
Hematol Oncol Clin North Am, 18 (2004), pp. 215-229

This study was supported by grants from the Spanish Society of Pulmonology and Thoracic Surgery (SEPAR), 1999, and Fundación Echebano, 2000.

Copyright © 2006. Sociedad Española de Neumología y Cirugía Torácica (SEPAR)
Archivos de Bronconeumología
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?