Journal Information
Vol. 15. Issue 4.
Pages 187-195 (October - December 1979)
Share
Share
Download PDF
More article options
Vol. 15. Issue 4.
Pages 187-195 (October - December 1979)
Full text access
Transporte de oxigeno
Transportation of oxygen
Visits
47190
María Teresa García Carmona*
* Jefe Adjunto del Servicio de Funciones Respiratorias. Clínica Puerta de Hierro. Centro Nacional de Investigaciones medico-quirúrgicas de La Seguridad Social. Madrid
This item has received
Article information
Resumen

Se hace una revisión general den transporte de oxígeno orientado principalmente el análisis de los aspectos bioquímicos implicados en él, comenzando por estudiar el papel de la hemoglobina como transportadora de oxígeno, tanto en lo que se refiere a su concentración como a su afinidad por el oxígeno.

Se estudia el significado de la máxima capacidad de oxigenación destacando la importancia que puede tener la presencia de caboxihemoglobina en la sangre, ya que ésta disminuye el valor teórico de la mencionada máxima capacidad de oxigenación. Se propone una corrección para el cálculo en el laboratorio del oxígeno que transporta una sangre, teniendo en cuenta la concentración de carboxihemoglobina, siempre que se trate de personas fumadoras o se presuma que existan concentraciones elevadas de la misma.

A continuación se hace un estudio profundo de la afinidad de la hemoglobina por el oxígeno a través de la curva de disociación, comenzando por definir la P50 y discutiendo el significado fisiológico de los desplazamientos de dicha curva como consecuencia de los cambios de afinidad. Se describen en detalle la estructura de la molécula de hemoglobina, así como los fenómenos que se producen durante la oxigenación y desoxigenación del tetrámero de hemoglobina. Se incluyen también los mecanismos de regulación de la afinidad de la hemoglobina por el oxígeno, resaltando la importancia de los hidro-geniones, PCO2 y concentración de 2,3 DPG en esta regulación, siendo los aumentos de acidez y PCO2 mecanismos de acción rápida, mientras que los de 2,3 DPG tardan algunas horas en producirse.

Se exponen brevemente los métodos de medida y se analizan las modificaciones de la afinidad de la hemoglobina por el oxígeno en diversas situaciones fisiológicas y patológicas.

Se describen los mecanismos de consumo de oxígeno a nivel celular, la formación de ATP y la utilización de la energía almacenada en esta molécula por el organismo. Por último, se expone la producción de ATP en casos de anaerobiosis por medio de la glucólisis anaerobia, destacando que es necesaria la producción de una considerable cantidad de ácido láctico para satisfacer las necesidades energéticas por esta vía. Se mencionan las limitaciones que supone el empleo del aumento de la relación L/P y el exceso de lactato para diagnosticar las hipoxias celulares.

Summary

The authors make a general review of the transportation of oxygen oriented principally towards the analysis of the biochemical aspect implied in this process. They begin by studying the role of hemoglobin as transportation agent of oxygen, both with respect to ist concentration as wel as to its affinity for oxygen.

They also study the meaning of the maximum capacity of oxygenation, emphasizing the importance that carboxyhemoglobin in the blood can have, as this decreases the theoretical value of the mentioned maximum capacity of oxygenation. They propose a correction for the calculation in the laboratory of the oxygen transported by the blood taking into account the concentration of carboxyhemoglogin, always when the persons treated are smokers or they presume an elevated concentration of the same.

The authors then make a profound study of the affinity of hemoglobin for oxygen through the curve of dissociation, beginning by defining P30 and discussing the physiological meaning of the displacement of said curve as a consequence of the changes of affinity. They describe in detail the structure of the molecule of hemoglobin as well as the phenomena produced during the oxygenation and desoxygenation of the tetramer of hemoglobin. They also include the mechanisms of regulation fo affinity of hemoglobin for oxygen, emphasizing the importance of hydrogen ions, PCO2 and concentration of 2,3 DPG in this regulation. The increases of acidity and of PCO2 are mechanisms of rapid action, whereas those of 2,3 DPG delay some hours in being produced.

The authors then describe birefly the methods of measurement and analyze the modifications of the affinity of hemoglobin for oxygen in diverse physiological and pathological situations.

They also describe the mechanisms of concumption of oxygen at the cellular level, the formation of ATP and the use of energy stored in this molecule by the organism. Finally, they discuss the production of ATP in cases of anaerobiosis by means of glycolysisanaerobia, emphasizing that the production of a considerable quantity of lactic acid is necessary to satisfy energetic necessities by this route. They mention the limitations that the use of the increase of the relation L/P supposes and the excess of láclate for diagnozing cellular hypoxias.

Full text is only aviable in PDF
Bibliografia
[1.]
M. Robert.
Affinité de l’hemoglobine pour l’oxygene.
Bull. europ. Physiopath., resp., 11 (1975), pp. 79
[2.]
A.C. Guyton.
Regulation of cardiac output.
Anaesthesiology, 29 (1968), pp. 314
[3.]
S. Mellander.
Contribution of small vessel tone to the regulation of blood volumen and formation of oedema.
Proc. R. Soc. Med., 61 (1968), pp. 55
[4.]
H.W. Davenport.
ABC de l’equilibre biochimique acido-basique.
Masson et Cie, (1970),
[5.]
E. Dominguez de Villota, T. Garcia Carmona, G. Barat, J. Estada, F. Avello.
The influence of carboxihemoglobin on the oxygen-binding capacity of blood.
Br. J. Anaest., 48 (1976), pp. 111
[6.]
P. Foex, C. Prys Roberts, C.E. Hahn, M. Fenton.
Comparison of oxygen content of blood measured directly with values derived from measurements of oxygen tension.
Br. J. Anaesth., 42 (1970), pp. 803
[7.]
G. Hufner.
Neue Versuche zur Bestimmung der Sauerstoff Capacitat des Blutfarbstffs.
Arch. Anat. Physiol., (Physiol.), (1894), pp. 130
[8.]
M. Scherrer, H. Bachofen.
The oxygen combining capacity of hemoglobin.
Anaesthesiology, 36 (1972), pp. 190
[9.]
M.K. Sykes, A.P. Adams, W.E. Finlay, A.E. Wightman, J.D. Monroe.
The cardiorespiratory effects of haemorhage and overtransfusion in does.
Br. J. Anaesth., 42 (1970), pp. 573
[10.]
R.A. Theye.
Calculation of blood O2 content from optically determined Hb and HbO2.
Anesthesiology, 33 (1970), pp. 653
[11.]
S.B. Krantz, L.O. Jacobson.
Erythropoyetin and the regulation of erytropoyesis.
University of Chicago Press, (1970),
[12.]
L. Garby.
Mechanism of utilitation of oxygen.
En «Problems of oxygen transport». Acta. Anaesth. Scand., 15 (1971), pp. 14
[13.]
G. Artuson, M. Robert.
Oxygen affinity of whole-blood in normal human subjects.
Acta. Anaesth. Scan., 45 (1971), pp. 22
[14.]
P. Astrup, K. Engel, J.W. Severinghaus, E. Munson.
The influence of temperature and pH on the dissociation curve of oxyhemoglobin of human blood.
Scand. J. Clin. Lab. Invest., 17 (1965), pp. 515
[15.]
H. Bartels, K. Betke, P. Hilpert, G. Niemeyer, K. Riegel.
Die sogennante Standard O2 Dissoziationskurve des gesunden erwachsenen Mesnchen.
Plfügers Arch. ges. Physiol., 272 (1961), pp. 372
[16.]
C. Lenfant, J. Torrance, R. Woodson, C.A. Finch.
Adaptation to hypoxia.
«Red cell Metalism and function», pp. 203
[17.]
N. Naeraa.
The variation of blood oxygen dissociation curve in patients.
Scand. J. Clin. Lab. Invest., 16 (1964), pp. 630
[18.]
J.W. Severinghaus, R.B. Wiskopf.
Lack of effect of high altitude on hemoglo bin oxygen affinity.
J. Appl. Physiol., 33 (1972), pp. 276
[19.]
R.M. Winslow, M.L. Svenberg, R.L. Berger, R.I. Shrager, M. Luzzana, M. Samaja, L.I. Rossi bernard.
Oxygen equilibrium curve of normal human blood and its evaluation by Adair's equation.
J. Biol. Chem., 252 (1977), pp. 2331
[20.]
R. Benesch, R.E. Benesch.
The effect of organic phosphates from the human erytrocyte on the allosteric propertis of hemoglobin.
Biochem. Biophys. Res. Commun., 26 (1967), pp. 162
[21.]
R. Beneshc, R.E. Benesch.
Intracellular organic phosphates as regulators of oxygen release by hemoglobin.
Nature. Lond., 221 (1970), pp. 618
[22.]
A. Charnutin, R.R. Curnish.
Effect of organic and inorganic phosphates on the oxygen equilibrium of human erytrocytes.
Arch. Biochem. Biphys., 121 (1967), pp. 96
[23.]
A.J. Bellinghan, J.C. Detter, C. Lenfant.
Regulatory mechanism of hemoglobin oxygen affinity in acidosis and alkalosis.
J. Clin. Invest., 50 (1971), pp. 700
[24.]
R. Benesch, R.E. Benesch.
Effects du 2,3 DPG sur la courve de dissociation de l’hemoglobine humaine.
Nature, 221 (1969), pp. 618
[25.]
L. Garby, C.H. De verdier.
Binding of 2,3 DPG to human hemoglobin A. Effects of pH, hemoglobin concentration and carbon dio xide.
En «Oxygen affinity of hemoglobin and red cell acid base status». 236,
[26.]
M.P. Hlastala, R.D. Woodson.
Saturation dependency of the Böhr effect: interations among H+, CO2. and DPG.
J. Appl. Physiol., 38 (1975), pp. 1126
[27.]
J.V. Kilmartin, L. Rossibernardi.
Inhibition of CO2 combination and reduction of the Böhr effect in hemoglobin chemically modified at its amino groups.
Nature, 222 (1969), pp. 1243
[28.]
M.F. Perutz.
Stereochemistry of cooperative effects in hemoglobin.
Nature (London), 228 (1970), pp. 726
[29.]
C.P. Poyart, E. Bursaux, A. Freminet.
Effect Böhr et affinité de l’hemoglo bine pour l’O2.
. Ann. Biol. Clin., 30 (1972), pp. 213
[30.]
K.E. Schaefer, A.A. Messier, C. Morcan.
Displacement of oxygen dissocia tion curves and red eell cation exchange in chronic hypercapnia.
Resp. Physiol., 10 (1970), pp. 299
[31.]
M.F. Perutz.
The Böhr effect and combination whit organic phosphates.
Nature (London), 228 (1970), pp. 734
[32.]
J. Otsuka, K.I. Takash.
A pausible secuence of the conformational changes of Hemo globin induced by oxygenation.
Arch. Biochem. Biophy., 179 (1977), pp. 706
[33.]
S. Rapoport, G.M. Guest.
The role of diphosphogliceric acid in the electrolyte equilibrium of blood cells.
J. Biol. Chemm., 131 (1939), pp. 675
[34.]
T. Garcia Carmona, J.M. Polu, C. Saunier, P. Sadoul.
Modifications sanguines transitoires de la glycolyse chez les malades hypercapniques ventilés artificillement.
Bull. Europ. Physiopath. resp., 12 (1976), pp. 199
[35.]
D. Hartemann, P. Horsky, T. Garcia carmona, B. Hannhart, C. Saunier.
Intermédiaires de la glycolise érythrocytaire au cours d’une hypercapnie de trois jours chez le chien.
Bull eurp. Physiopath. resp., 12 (1976), pp. 185
[36.]
A. Aberman, J.M. Cavanilles, J. Trotter, D. Erbeck, M.H. Weil, H. Shubin.
An equation for the oxygen hemo globin dissociation curve.
J. Appl. Physiol., 35 (1973), pp. 570
[37.]
A. Aberman, J.M. Cavanilles, M.H. Weil, H. Shubin.
Blood P50 calculated from a single measurement of pH, PO2.
J. Appl. Physiol., 38 (1975), pp. 171
[38.]
M.A. Duvelleroy, R.G. Buckles, S. Rosenkaimer, C. Tung, M.B. Laver.
An oxyhemoglobin dissociation analyzer.
J. Appl. Physiol., 28 (1970), pp. 227
[39.]
B.W. Kirk, M.B. Raber, K.R. Duke.
Simplified method for determining the P50 of blood.
J. Appl. Physiol., 38 (1975), pp. 1140
[40.]
M.A. Lichtman, M. Murphy, M. Pogal.
The use of a single venous blood sample to assess oxygen binding to hemoglobin.
Brith J. Haematol., 32 (1976), pp. 89
[41.]
C. Lenfant, P. Ways, C. Aucutt, J. Cruz.
Effect of chronic hypoxic hypoxia on the O2-Hb dissociation curve and respiratory gas transport in man.
Resp. Physiol., 7 (1969), pp. 7
[42.]
C. Lenfant, K. Sullivan.
Adaptation to high altitude.
New Engl. J. Med., 284 (1971), pp. 298
[43.]
C. Lenfant, J.D. Torrance, C. Reynafarje.
Shift of the O2-Hb dissocia tion curve at altitude: mechanism and effect.
J. Appl. Physiol., 30 (1971), pp. 625
[44.]
M. Rorth, S.F. Nygaard.
Phosphate metabolism of the red cell during exposure to high altitude. En «Oxygen affinity of hemoglobin and red cell acid base status», pp. 600
[45.]
S.D. Shapell, J.A. Murray, A.J. Bellinghan, R.D. Woodson, J.C. Detter, C. Lenfant.
Adaptation to exercise: role of hemoglobin affinity for oxygen and 2, 3 diphosphoglycerate.
J. Appl. Physiol., 30 (1971), pp. 827
[46.]
L.J. Fairweather, J. Walker, D.C. Flenley.
2,3 Diphosphoglycerate concentrations and the dissociation of oxyhaemoglobin ventilatory failure.
Clin. Sci. Mol. Med., 47 (1974), pp. 577
[47.]
P.M. Tweeddale, R.J.E. Leggett, D. Flenley.
Oxygen affinity in vivo and in vitro in chronic ventilatory failure.
Clin. Sci. Mol. Med., 52 (1977), pp. 277
[48.]
M.J. Edwards, M.J. Novy, C.L. Walters, J. Wetcalfe.
Improved oxy gen release: an adaptation of mature red cells to hypoxia.
J. Clin. Invest., 47 (1968), pp. 1851
[49.]
M.J. Edwards, B. Canon, J. Albertson, R.M. Bigley.
Mean red cell age as determinant of blood oxygen affinity.
Na ture. (Lond), 230 (1971), pp. 583
[50.]
C.R. Valery, C.G. Zaroulis, N.L. Portier.
Peripheral red cell as a functional biopsy to determine tissue oxygen tension. En «Oxygen affinity of hemoglobin and red cell acid base status», pp. 650
[51.]
A. Agostini, M.D. Stabilini, C. Be-rasconi, G.C. Gerli.
The oxyhemoglobin dissociation curve in hypercapnie patients.
Amer. Heart J., 87 (1974), pp. 670
[52.]
M. Hjelm.
The content of 2,3 diphosphoglycerate and some other phospho-compounds in human erythrocyte from healthy adults and sub-jects with different types of anaemia.
Forsvarmedicin, 5 (1969), pp. 219
[53.]
R.D. Woodson, J.D. Torrance, S.D. Shappel, C. Lenfant.
The effect of cardiac disease on hemoglobin-oxygen binding.
J. Clin. Invest., 49 (1970), pp. 1349
[54.]
J. Torrance, P. Jacobs, A. Restrepo, J. Eschbach, C. Lenfant, C.A. Finch.
Intraerythrocytic adaptation to anemia.
New Engl. J. Med., 283 (1970), pp. 165
[55.]
F.J.W. Roughton.
The equilibrium of carbon monoxide with human hemoglobin in whole blood.Ann.
N.Y. Aca. Sci., 174 (1970), pp. 177
[56.]
D.J. Valtis, A.C. Kennedy.
Detective gas transport function of stored red blood cells.
[57.]
C.H. De verdier, L. Garby, M. Hjelm.
Maintenance of a normal oxygen transport function of sotred red cells.
I Theoretical aspects. Forsvarsmedicín, 5 (1969), pp. 244
[58.]
C.F. Hogman, O. Akerblom, C.H. De verdier.
Optimal use of different storage procedures.
Bibl. haemat., 38 (1971), pp. 175
[59.]
F. Oski, H. Sugerman, T. Pollock.
Experimentally induced in vivo alteration in the affinity of hemoglobin for oxygen.
Blood., 38 (1971), pp. 794
[60.]
L. Garby.
Mechanism of utilization of oxygen En «Problems of oxygen transport».
Act. Anaeslh. Scand., 15 (1971), pp. 11
[61.]
B. Chance, R. Thurman, M. Gosalvez.
Oxygen affinities of cellular respiration.
Forsvarsmedicin, 5 (1969), pp. 235
[62.]
G. Cohen.
Le metabolisme cellulaire et sa régulation..
Herman. Edit, (1971), pp. 47
[63.]
G.A. Goldsmith.
The blood lactatepiruvate relation-ship in varius physiologic and pathologic states.
Amer. J. Sci., 215 (1948), pp. 182
[64.]
W.E. Huckabee.
Control of concen tration gradients of pyruvate and lactante across cell membranes in blood.
J. Appl. Physiol., 9 (1956), pp. 163
[65.]
W.E. Huckabee.
Abnormal resting blood lactate; the significance of hyperlactacidemia in hospitalized patients: lactings blood acidosis.
Amer. J. Med., 30 (1961), pp. 833
[66.]
D.R. Axelrod.
Organic acids and calcium in hyperventilation.
J. Appl. Physiol., 16 (1961), pp. 709
[67.]
A. Eichenholz, R.O. Mulhausen, W.E. Anderson, F.M. Macdonald.
Primary hypocapnia: a cause of metabolic acidosis.
J. Appl. Physiol., 17 (1962), pp. 283
[68.]
L. Granholm, B.K. Siesjo.
The effects of hypercapnia and hypocapnia upon the cerebroespinal fluid lactate and pyruvate concentrations and upon the lactate, pyruvate ATP, ADP, phosphocreatine concentrations of cat brain tissue.
Acta Physiol. Scand., 75 (1969), pp. 257
[69.]
D.T. Zborowska-Slius, J.B. Dossetter.
Hyperlactatemia of hyperventila tion.
J. Appl. Physiol., 22 (1967), pp. 746
[70.]
R. Assan, M. Derot, G. Rosselin, J. Reynier, G. Tchobrousiski.
L’acidose lactique.
Presse méd., 73 (1965), pp. 1269
Copyright © 1979. Sociedad Española de Neumología y Cirugía Torácica
Archivos de Bronconeumología
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?