Journal Information
Vol. 44. Issue 5.
Pages 263-270 (January 2008)
Share
Share
Download PDF
More article options
Vol. 44. Issue 5.
Pages 263-270 (January 2008)
Review Article
Full text access
The Evolution of the Human Species: A Long Journey for the Respiratory System
Visits
9453
Joaquim Gea
Corresponding author
jgea@imim.es

Correspondence Dr J. Gea Servicio de Neumología, Hospital del Mar Pg. Marítim, 27 08003 Barcelona, Spain
Servicio de Neumología, Hospital del Mar, Unidad de Investigación en Músculo y Aparato Respiratorio (URMAR), IMIM. Departamento de Ciencias Experimentales y de la Salud (CEXS), Universidad Pompeu Fabra, Barcelona, Spain
This item has received
Article information

Evolution has involved important changes in hominids, particularly in relation to the process of encephalization and the transition to bipedalism. Some of these changes involved structures related to the respiratory system and altered its functional behavior. Changes affecting the relationship between the skull and the spinal column, together with an improved laryngeal structure (allowing vocalization), resulted in a soft and elongated oropharynx, with part of the tongue integrated into its anterior wall, and thus in an increased tendency towards upper airway collapse during sleep. Vertebral bodies moved inwards into the thorax, which became slightly shorter and went from a bell-shaped appearance to that of a flatter barrel-shaped one. This resulted in respiratory muscle mechanics that were more efficient for upright posture. The pulmonary ventilation and perfusion gradients moved from a dorsoventral to a craniocaudal axis, while the structural organization of the respiratory muscles underwent only minor changes.

Key words:
Hominids
Upper airways
Thorax
Respiratory muscles

La evolución ha implicado importantes cambios en los homínidos, sobre todo por el proceso de encefalización y la bipedestación. Algunas modificaciones afectaron a estructuras relacionadas con el aparato respiratorio y cambiaron su comportamiento funcional. Así, los cambios experimentados en las relaciones entre cráneo y columna vertebral, junto con una mejor estructura laríngea (fonación), dieron lugar a una orofaringe blanda y alargada, con parte de la lengua integrada en su pared anterior, lo que facilita el colapso durante el sueño. La caja torácica disminuyó ligeramente su altura, interiorizó las vértebras y pasó además de una forma campaniforme a otra de tipo tonel, más aplanada, lo que dio como resultado una mecánica muscular respiratoria más eficiente para la bipedestación. Los clásicos gradientes ventilatorio y circulatorio pulmonares pasaron de un eje dorsoventral a uno de tipo apicobasal, mientras que los músculos respiratorios apenas modificaron su disposición estructural.

Palabras clave:
Homínidos
Vía aérea superior
Tórax
Músculos respiratorios
Full text is only available in PDF
References
[1]
J Bertranpetit, F Calafell.
Genome views on human evolution.
Evolution: from molecules to ecosystems, pp. 260-271
[2]
Origen y evolución de la especie humana.
Historia universal. Volume I. Los orígenes, pp. 130-173
[3]
FH Smith, E Trinkaus, PB Pettitt, I Karavanic, M Paunovic.
Direct radiocarbon dates for Vindija G(1) and Velika Pecina late Pleistocene hominid remains.
Proc Natl Acad Sci USA, 96 (1999), pp. 1281-1286
[4]
RE Green, J Krause, SE Ptak, AW Briggs, MT Ronan, JF Simons, et al.
Analysis of one million base pairs of Neanderthal DNA.
Nature, 444 (2006), pp. 330-336
[5]
JP Noonan, G Coop, S Kudaravalli, D Smith, J Krause, J Alessi, et al.
Sequencing and analysis of Neanderthal genomic DNA.
Science, 314 (2006), pp. 1113-1118
[6]
PD Evans, N Mekel-Bovrov, EJ Vallender, RR Hudson, BT Lahn.
Evidence that the adaptive allele of the brain size gene microcephalin introgressed into Homo sapiens from an archaic Homo lineage.
Prot Natl Acad Sci USA, 103 (2006), pp. 18178-18183
[7]
J Hublin, F Spoor, M Braun, F Zonneveld, S Condemi.
A late Neanderthal associated with Upper Paleolithic artefacts.
Nature, 381 (1996), pp. 224-226
[8]
L Aiello, C Dean.
An introduction to human evolutionary anatomy, Harcourt Brace & Company, Publishers, (1990),
[9]
RE Kelly.
Tripedal knuckle-walking: a proposal for the evolution of human locomotion and handedness.
J Theor Biol, 213 (2001), pp. 333-358
[10]
DE Lieberman, RC McCarthy.
The ontogeny of cranial base angulation in humans and chimpanzees and its implications for reconstructing pharyngeal dimensions.
J Human Evol, 36 (1999), pp. 487-517
[11]
Britannica Encyclopaedia.
East African Rift System.
[12]
JM Bermúdez de Castro.
El chico de la Gran Dolina. En los orígenes de lo humano, Editorial Crítica SL, (2002),
[13]
RL Holloway.
Within-species brain-body weight variability: a reexamination of the Danish data and other primate species.
Am J Phys Anthropol, 53 (1980), pp. 109-121
[14]
HJ Jerison.
Evolution of the brain and intelligence, Academic Press, (1973),
[15]
L Aiello, P Wheeler.
Brains and guts in human and primate evolution: the expansive organ hypothesis.
Curr Anthropol, 36 (1995), pp. 199-221
[16]
WE Le Gros Clark.
The fossil evidence for human evolution, University of Chicago Press, (1964),
[17]
The archaeology of human ancestry: power, sex and tradition,
[18]
JM Bermúdez de Castro, A Rosas, E Carbonell, ME Nicolás, J Rodríguez, JL Arsuaga.
A modern human pattern of dental development in lower Pleistocene hominids from Atapuerca-TD6 (Spain).
Proc Natl Acad Sci USA, 96 (1999), pp. 4210-4213
[19]
WE Le Gros Clark.
“Apemen” of South Africa.
Antiquity, 24 (1950), pp. 179-186
[20]
E Carbonell.
Els somnis de l'evolució. National Geographic. Adventure Press, La Magrana SA, (2003),
[21]
RL Susman.
Hand function and tool behavior in early hominids.
J Human Evol, 35 (1998), pp. 23-46
[22]
MD Rose.
A hominine hip bone, KNM-ER 3228, from East Lake Turkana, Kenya.
Am J Phys Anthropol, 63 (1984), pp. 371-378
[23]
D Randall, W Burggren, K French.
Intercambio de gases y equilibrio ácido-base.
Fisiología animal. Mecanismos y adaptaciones, pp. 563-622
[24]
MC Dean.
Comparative myology of the hominoid cranial base. II. The muscles of the prevertebral and upper pharyngeal region.
Folia Primatol (Basel), 44 (1985), pp. 40-51
[25]
GK Reznik.
Comparative anatomy, physiology, and function of the upper respiratory tract.
Environ Health Perspect, 85 (1990), pp. 171-176
[26]
JT Laitman, RC Heimbuch.
The basicranium of Plio-Pleistocene hominids as an indicator of their upper respiratory systems.
Am J Phys Anthropol, 59 (1982), pp. 323-343
[27]
P Lieberman, ES Crelin.
On the speech of Neanderthal man.
Linguist Inquiry, 2 (1971), pp. 203-222
[28]
R Garriga, S Franquesa.
El País. November 8, 2004.
[29]
LI Barsh.
The origin of pharyngeal obstruction during sleep.
Sleep and Breathing, 3 (1999), pp. 17-21
[30]
S Nakakuki.
The bronchial tree and lobular division of the gorilla lung.
Primates, 32 (1991), pp. 403-408
[31]
S Nakakuki.
The bronchial tree and lobular division of the chimpanzee lung.
Primates, 33 (1992), pp. 265-272
[32]
JB West.
Fisiología respiratoria, 7th ed., Editorial Médica Panamericana, (2005),
[33]
B Núñez, BG Cosío.
Estructura y desarrollo del pulmón.
SEPAR. Fisiología y biología respiratorias, pp. 13-21
[34]
PD Wagner, RB Laravuso, E Goldzimmer, PF Naumann, JB West.
Distribution of ventilation-perfusion ratios in dogs with normal and abnormal lungs.
J Appl Physiol, 38 (1975), pp. 1099-1109
[35]
F Rollin, D Desmecht, S Verbanck, A van Muylem, P Lekeux, M Paiva.
Multiple-breath washout and washin experiments in steers.
J Appl Physiol, 81 (1996), pp. 957-963
[36]
AH Schultz.
Vertebral column and thorax.
Primatologia, Handbuch der Primatenkunden, IV,
[37]
AF Tredgold.
Variations of ribs in the primates, with especial reference to the number of sternal ribs in man.
J Anat Physiol, 31 (1897), pp. 288-302
[38]
JC Ohman.
The first rib of hominoids.
Am J Phys Anthropol, 70 (1986), pp. 209-229
[39]
DC Cook, JE Buikstra, CJ DeRousseau, DC Johanson.
Vertebral pathology in the afar australopithecines.
Am J Phys Anthropol, 60 (1983), pp. 83-102
[40]
E Trinkaus.
Functional aspects of Neandertal pedal remains.
Foot Ankle, 3 (1983), pp. 377-390
[41]
P Schmidt.
A reconstruction of the skeleton of A.L. 288-1 (Hadar) and its consequences.
Folia Primatol (Basel), 40 (1983), pp. 283-306
[42]
DL Beckman.
Mechanical properties of the primate thorax.
J Med Primatol, 2 (1973), pp. 218-222
[43]
JT Stern, RL Susman.
The locomotor anatomy of Australopithecus afarensis.
Am J Phys Anthropol, 60 (1983), pp. 279-317
[44]
S Gibbs, M Collard, B Wood.
Soft-tissue anatomy of the extant hominids: a review and phylogenetic analysis.
J Anat, 200 (2002), pp. 3-49
[45]
PE Steiner.
Anatomical observations in a Gorilla gorilla.
Am J Phys Anthropol, 12 (1954), pp. 145-179
[46]
JM Montserrat, J Gea.
Enfermedades del diafragma y de los músculos ventilatorios.
Medicina interna, 15th ed., pp. 853-857
[47]
M Orozco-Levi, J Gea, J Monells, X Aran, C Aguar, J Broquetas.
Activity of latissimus dorsi muscle during inspiratory threshold loads.
Eur Respir J, 8 (1995), pp. 441-445
[48]
M Orozco-Levi, X Borrat, JM Broquetas, J Gea.
Evidence of deltoid muscle recruitment in COPD patients and the theory of muscle compartments.
Am J Crit Care Med, 161 (2000), pp. A519
[49]
A de Troyer, D Leduc.
Effect of diaphragmatic contraction on the action of the canine parasternal intercostals.
J Appl Physiol, 101 (2006), pp. 169-175
[50]
A Legrand, A de Troyer.
Spatial distribution of external and internal intercostal activity in dogs.
J Physiol, 518 (1999), pp. 291-300
[51]
U Jurgens, S Schriever.
Respiratory muscle activity during vocalization in the squirrel monkey.
Folia Primatol (Basel), 56 (1991), pp. 121-132
Copyright © 2008. Sociedad Española de Neumología y Cirugía Torácica (SEPAR)
Archivos de Bronconeumología
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?