Journal Information
Vol. 43. Issue 3.
Pages 150-155 (January 2007)
Share
Share
Download PDF
More article options
Vol. 43. Issue 3.
Pages 150-155 (January 2007)
Original Articles
Full text access
Physiologic Effects of Noninvasive Ventilation in Patients With Chronic Obstructive Pulmonary Diseas
Visits
4731
Jorge Y. Nemea,
Corresponding author
jneme@montevideo.com.uy

Correspondence: Dr. J.Y. Neme. Departamento de Fisiopatología. Hospital de Clínicas. Avda. Italia, s/n, 15.º piso. Montevideo. Uruguay
, Amalia M. Gutiérrezb, M. Cristina Santosb, Marta Berónc, Cristina Ekrothb, José P. Arcosb, Héctor Píriza, F Javier Hurtadoa
a Departamento de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
b Laboratorio de Exploración Funcional Respiratoria, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
c Centro de Tratamiento Intensivo, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
This item has received
Article information
Objective

Noninvasive mechanical ventilation has been of use in the treatment of some forms of chronic and acute respiratory failure. However, the benefits of its use in patients in the stable phase of severe chronic obstructive pulmonary disease (COPD) remain unclear. A combination of continuous positive airway pressure (CPAP) and pressure support ventilation (PSV) may improve respiratory mechanics and alveolar ventilation, and reduce inspiratory muscle effort. In this study, we analyzed the physiologic effects of differing levels of CPAP and CPAP plus PSV in patients with stable severe COPD.

Patients and Methods

Work of breathing, breathing pattern, oxygen saturation measured by pulse oximetry, PaO2, and PaCO2 were analyzed in a group of 18 patients under the following conditions: a) baseline; b) CPAP, 3 cm H20; c) CPAP, 6 cm H20; d) CPAP 3 cm H20 plus PSV 8 cm H20; and e) CPAP 3 cm H20 plus PSV 12 cm H20.

Results

CPAP at pressures of 3 and 6 cm H20 was associated with an increase in tidal volume (VT) from a mean (SD) baseline value of 0.52 (0.04) L to 0.62 (0.04) and 0.61 (0.03) L, respectively. Minute ventilation increased from 8.6 (0.5) L/min to 10.8 (0.6) and 10.9 (0.5) L/min, respectively. Mean inspiratory flow (VT/Ti) increased from 0.35 (0.02) L/s to 0.44 (0.02) and 0.41 (0.02) L/s, respectively, and dynamic intrinsic positive end-expiratory pressure (PEEPi,dyn) was reduced from 1.63 (0.7) cm H20 to 1.1 (0.06) and 0.37 (0.4) cm H20, respectively. CPAP did not reduce the work of breathing. Association of CPAP at 3 cm H20 with PSV of 8 or 12 cm H20 increased VT to 0.72 (0.07) and 0.87 (0.08) L, respectively, while minute ventilation increased to 12.9 (0.8) and 14.9 (1.1) L/s, respectively. Mean inspiratory flow also increased to 0.50 (0.03) and 0.57 (0.03) L/s, respectively. Work of breathing was reduced from 0.90 (0.01) J/L to 0.48 (0.06) and 0.30 (0.06) J/L, respectively, while PEEPi,dyn increased to 1.30 (0.02) and 2.42 (0.08) cm H20, respectively. With combined CPAP of 3 cm H20 and PSV of 12 cm H20, PaCO2 was reduced from a baseline value of 41.2 (1.5) mm Hg to 38.7 (1.9) mm Hg. All of the changes were statistically significant (P<.05).

Conclusions

CPAP of 3 cm H20 in combination with PSV improved breathing pattern, increased alveolar ventilation, and reduced work of breathing. These results offer a rational basis for the use of noninvasive mechanical ventilation in the treatment of patients with stable severe COPD.

Key words:
Noninvasive ventilation
Pressure support ventilation
Chronic respiratory failure
Work of breathing
Pulmonary disease, chronic obstructive
COPD
Continuous positive airway pressure
Objetivo

La ventilación mecánica no invasiva ha sido útil en el tratamiento de algunas formas de insuficiencia respiratoria aguda y crónica. Sin embargo, sus posibles beneficios para pacientes con enfermedad pulmonar obstructiva crónica (EPOC) grave en fase estable continúan siendo objeto de controversia. La combinación de presión positiva continua de la vía aérea (CPAP) y presión de soporte (PS) puede mejorar la mecánica respiratoria, el trabajo muscular y la ventilación alveolar. Estudiamos los efectos fisiológicos de diferentes cifras de CPAP y CPAP + PS en pacientes con EPOC grave en fase estable.

Pacientes y Métodos

En 18 pacientes se determinaron el trabajo respiratorio, el patrón respiratorio, la oximetría de pulso y los gases sanguíneos en las siguientes condiciones: a) basal; b) CPAP: 3 cmH2O; c) CPAP: 6 cmH2O; d) CPAP + PS: 3 y 8 cmH2O, respectivamente, y e) CPAP + PS: 3 y 12 cmH2O, respectivamente.

Resultados

La CPAP de 3 y 6 cmH2O se asoció con aumento del volumen corriente (Vc), que de un valor basal medio (± desviación estándar) de 0,52 ± 0,04 pasó a 0,62 ± 0,04 y 0,61 ± 0,03 l, respectivamente. La ventilación minuto aumentó de 8,6 ± 0,5 a 10,8 ± 0,6 y 10,9 ± 0,5 l/min, respectivamente. El flujo medio inspiratorio (Vc/Ti) pasó de 0,35 ± 0,02 a 0,44 ± 0,02 y 0,41 ± 0,02 ml/min, y la presión positiva al final de la inspiración intrínseca (PEEPi dinámica) disminuyó de 1,63 ± 0,7 a 1,1 ± 0,06 y 0,37 ± 0,4 cmH2O, respectivamente. La CPAP no disminuyó el trabajo respiratorio. La asociación de CPAP de 3 cmH2O con PS de 8 y 12 cmH2O aumentó el Vc a 0,72 ± 0,07 y 0,87 ± 0,08 l, mientras la ventilación minuto aumentó a 12,9 ± 0,8 y 14,9 ± 1,1 l/min, respectivamente. El Vc/Ti también aumentó a 0,50 ± 0,03 y 0,57 ± 0,03 l/s, respectivamente. El trabajo respiratorio disminuyó desde 0,90 ± 0,01 a 0,48 ± 0,06 y 0,30 ± 0,06 J/l, mientras que la PEEPi dinámica aumentó a 1,30 ± 0,02 y 2,42 ± 0,08 cmH2O, respectivamente. Con CPAP de 3 cmH2O y PS de 12 cmH2O la presión arterial de anhídrido carbónico disminuyó de un valor basal de 41,2 ± 1,5 a 38,7 ± 1,9 Torr. Todos estos cambios fueron estadísticamente significativos (p < 0,05).

Conclusiones

El uso de CPAP de 3 cmH2O con PS mejoró el patrón ventilatorio, aumentó la ventilación alveolar y disminuyó el trabajo respiratorio. Estos resultados ofrecen fundamentos para un uso racional de la ventilación mecánica no invasiva para el tratamiento de los pacientes con EPOC grave en fase estable.

Palabras clave:
Ventilación no invasiva
Presión de soporte
Insuficiencia respiratoria crónica
Trabajo respiratorio
EPOC
Presión positiva continua de la vía aérea
Full text is only aviable in PDF
REFERENCES
[1]
L Brochard, J Mancebo, M Wysocki, F Lofaso, G Conti, A Rauss, et al.
Noninvasive ventilation for acute exacerbations of chronic obstructive pulmonary disease.
N Engl J Med, 333 (1995), pp. 817-822
[2]
GU Meduri, CC Conoscenti, P Menashe, S Nair.
Noninvasive face mask ventilation in patients with acute respiratory failure.
Chest, 95 (1989), pp. 865-870
[3]
E Clini, C Sturani, A Rossi, S Viaggi, A Corrado, C Donner, et al.
The Italian multicenter study on noninvasive ventilation in chronic obstructive pulmonary disease patients.
Eur Respir J, 20 (2002), pp. 529-538
[4]
S Mehta, NS Hill.
Noninvasive ventilation.
Am J Respir Crit Care Med, 163 (2001), pp. 540-577
[5]
O Díaz, P Bégin, B Torrealba, E Jover, C Lisboa.
Effects of noninvasive ventilation on lung hyperinflation in stable hypercapnic COPD.
Eur Respir J, 20 (2002), pp. 1490-1498
[6]
Consensus Conference.
Clinical indications for non-invasive positive pressure ventilation in chronic respiratory failure due to restrictive lung disease, COPD, and nocturnal hypoventilation. A consensus conference report.
Chest, 116 (1999), pp. 521-534
[7]
MW Elliot, AK Simond, MP Carroll, JA Wedzicha, MA Branthwaite.
Domiciliary nocturnal nasal positive pressure ventilation in hypercapnic respiratory failure due to chronic obstructive lung disease: effects on sleep and life quality.
Thorax, 47 (1992), pp. 342-348
[8]
JP Renston, AF DiMarco, GS Supinski.
Respiratory muscle rest using nasal BiPAP ventilation in patients with stable COPD.
Chest, 105 (1994), pp. 1053-1060
[9]
DJ Meecham Jones, EA Paul, PW Jones, JA Wedzicha.
Nasal pressure support ventilation plus oxygen compared with oxygen therapy in hypercapnic COPD.
Am J Respir Crit Care Med, 152 (1995), pp. 538-544
[10]
S Díaz-Lobato, S Mayorales-Alises.
Reflexiones para la organización y desarrollo de una unidad de ventilación mecánica no invasiva y domiciliaria.
Arch Bronconeumol, 41 (2005), pp. 579-583
[11]
S Nava, P Navalesi.
Domiciliary noninvasive ventilatory support.
Lung biology in health and disease. Clinical management of chronic obstructive pulmonary disease, pp. 813-848
[12]
MS Belman, GWS Hoo, SH Kuei, R Shadmehr.
Efficacy of positive vs. negative pressure ventilation in unloading the respiratory muscles.
Chest, 98 (1990), pp. 850-856
[13]
Z Carrey, SB Gottfried, RD Levy.
Ventilatory muscle support in respiratory failure with positive pressure ventilation.
Chest, 97 (1990), pp. 150-158
[14]
P de Lucas, C Tarancón, L Puente, C Rodríguez, E Tatey, J Monturiol.
Nasal continuous positive airway pressure in patients with COPD in acute respiratory failure. A study of the immediate effects.
Chest, 104 (1993), pp. 1694-1697
[15]
L Apendini, A Patessio, S Zanaboni, M Carone, B Gukov, et al.
Physiologic effects of positive end-expiratory pressure and mask pressure support during exacerbations of chronic obstructive pulmonary disease.
Am J Respir Crit Care Med, 149 (1994), pp. 1069-1076
[16]
American Thoracic Society.
Standards for the diagnosis and care of patients with chronic obstructive pulmonary disease.
Am J Respir Crit Care Med, 1152 (1995), pp. S77-S121
[17]
RA Pauwels, AS Buist, PMA Calverley, CR Jenkins, SS Hurd.
Global strategy for the diagnosis, management and prevention of chronic obstructive lung disease: NHLBI/WHO Global Initiative for Chronic Obstructive Lung Disease (GOLD) workshop summary.
Am J Respir Crit Care Med, 163 (2001), pp. 1256-1276
[18]
A Baydur, P Behrakis, W Zin, M Jaeger, J Milic-Emili.
A simple method for assessing the validity of the esophageal balloon technique.
Am Rev Respir Dis, 126 (1982), pp. 788-791
[19]
BJ Petrof, M Legaré, P Goldberg, J Milic-Emili, S Gottfried.
Continuous positive airway pressure reduces work of breathing and dyspnea during weaning from mechanical ventilation in severe chronic obstructive pulmonary disease.
Am Rev Respir Dis, 141 (1990), pp. 281-289
[20]
L Brochard, A Harf, H Lorino, F Lemaire.
Inspiratory pressure support prevents diaphragmatic fatigue during weaning from mechanical ventilation.
Am Rev Respir Dis, 139 (1989), pp. 513-521
[21]
CA Rabec, O Reybet-Deget, P Bonniaud, A Fanton, P Camus.
Monitorización de las fugas en ventilación no invasiva.
Arch Bronconeumol, 40 (2004), pp. 508-517
[22]
AM Miro, U Shivaram, I Hertig.
Continuous positive airway pressure in patients with COPD in acute hypercapnic respiratory failure.
Chest, 103 (1993), pp. 266-268
[23]
TC Smith, JJ Marini.
Impact of PEEP on lung mechanics and work of breathing in severe airflow obstruction.
J Appl Physiol, 65 (1988), pp. 1488-1499
[24]
FJ O'Donoghue, PG Catcheside, AS Jordan, AD Bersten, RD McEvoy.
Effect of CPAP on intrinsic PEEP, inspiratory effort, and lung volume in severe stable COPD.
Thorax, 57 (2002), pp. 533-539
[25]
CSH Sassoon, CK Mahutte.
Work of breathing during mechanical ventilation.
Lung biology in health and disease. Physiological basis of ventilatory support, pp. 261-310
[26]
J Haluzka, DA Chartrand, A Grassino, J Milic-Emili.
Intrinsic PEEP and arterial PaCO2 in stable patients with chronic obstructive pulmonary disease.
Am Rev Respir Dis, 141 (1990), pp. 1194-1197
[27]
F Lofaso, L Brochard, D Touchard, T Hang, A Harf, D Isabey.
Evaluation of carbon dioxide rebreathing during pressure support ventilation with airway management system (BiPAP) devices.
Chest, 108 (1995), pp. 772-778
[28]
GT Ferguson, M Gilmartin.
CO2 rebreathing during BiPAP ventilatory assistance.
Am J Respir Crit Care Med, 151 (1995), pp. 1126-1135
[29]
International Consensus Conference in Intensive Care Medicine: non-invasive positive pressure ventilation in acute respiratory failure.
Am J Respir Crit Care Med, 163 (2001), pp. 283-291
[30]
PK Plant, JL Owen, MW Elliott.
Early use of non-invasive ventilation for acute exacerbations of chronic obstructive pulmonary disease on general respiratory wards: a multicenter randomized controlled trial.
Lancet, 355 (2000), pp. 1931-1935
[31]
A Rossi, NS Hill.
Pro-con debate: noninvasive ventilation has been shown to be effective/ineffective in stable COPD.
Am J Respir Crit Care Med, 161 (2000), pp. 688-691
[32]
O Díaz, R Iglesia, M Ferrer, E Zavala, C Santos, P Wagner, et al.
Effects of noninvasive ventilation on pulmonary gas exchange and hemodynamics during acute hypercapnic exacerbations of chronic obstructive pulmonary disease.
Am J Respir Crit Care Med, 156 (1997), pp. 1840-1845
Copyright © 2007. Sociedad Española de Neumología y Cirugía Torácica (SEPAR)
Archivos de Bronconeumología
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?