Journal Information
Vol. 46. Issue 7.
Pages 378-382 (July 2010)
Share
Share
Download PDF
More article options
Vol. 46. Issue 7.
Pages 378-382 (July 2010)
Review Article
Full text access
Permissive and Non-permissive Hypercapnia: Mechanisms of Action and Consequences of High Carbon Dioxide Levels
Hipercapnia permisiva o no permisiva: mecanismos de acción y consecuencias de altos niveles de dióxido de carbono
Visits
6345
Arturo Brivaa,
Corresponding author
, Emilia Lecuonab, Jacob I. Sznajderb
a Medicina Intensiva, Departamento de Fisiopatología, Hospital de Clínicas, Montevideo, Uruguay
b Department of Medicine, Pulmonary Division, Feinberg School of Medicine, Northwestern University, Chicago, United States
This item has received
Article information
Abstract
Bibliography
Download PDF
Statistics
Abstract

Acute lung injury is a disease with high mortality, which affects a large numbers of patients whose treatment continues to be debated. It has recently been postulated that hypercapnia can attenuate the inflammatory response during lung injury, which would assign it a specific role within lung protection strategies during mechanical ventilation. In this paper, we review current evidence on the role that high levels of CO2 in the blood play in lung injury. We conclude that, although there are reports that show benefits, the most recent evidence suggests that hypercapnia can be harmful and can contribute to worsening lung damage.

Keywords:
Acute lung injury
Hypercapnia
Lung damage
Resumen

La lesión pulmonar aguda es una enfermedad con alta mortalidad, que afecta a gran cantidad de pacientes y cuyo tratamiento continúa en debate. Recientemente, se ha postulado que la hipercapnia podría atenuar la respuesta inflamatoria durante la lesión pulmonar, lo que le otorgaría un papel específico dentro de las estrategias de protección pulmonar durante la asistencia respiratoria mecánica. En el presente trabajo revisamos la evidencia actual sobre el papel que altos niveles de CO2 en sangre desempeñan en la lesión pulmonar. Concluimos que, si bien existen reportes que demuestran beneficios, evidencia más reciente sugiere que la hipercapnia puede ser nociva, contribuyendo a agravar el daño pulmonar.

Palabras clave:
Lesion pulmonar aguda
Hipercapnia
Daño pulmonar
Full text is only aviable in PDF
References
[1.]
G.E. Gamow, E. Teller.
The Expanding Universe and the Origin of the Great Nebulæ.
Nature, (1939), pp. 143
[2.]
F.W. Zwiers, A.J. Weaver.
CLIMATE CHANGE: The Causes of 20th Century Warming.
[3.]
J.R. Watling, M.C. Press, W.P. Quick.
Elevated CO(2) induces biochemical and ultrastructural changes in leaves of the C(4) cereal sorghum.
Plant Physiol, 123 (2000), pp. 1143-1152
[4.]
J.M. Hall-Spencer, R. Rodolfo-Metalpa, S. Martin, E. Ransome, M. Fine, S.M. Turner, et al.
Volcanic carbon dioxide vents show ecosystem effects of ocean acidification.
Nature, 454 (2008), pp. 96-99
[5.]
N.S. Cherniack, G.S. Longobardo.
Oxygen and carbon dioxide gas stores of the body.
Physiol Rev, 50 (1970), pp. 196-243
[6.]
C. Geers, G. Gros.
Carbon dioxide transport and carbonic anhydrase in blood and muscle.
Physiol Rev, 80 (2000), pp. 681-715
[7.]
D.A. Kregenow, E.R. Swenson.
Therapeutic hypercapnia: are we in “stasis” or moving forward?.
Crit Care Med, 36 (2008), pp. 2473-2474
[8.]
L.J. Greenfield, P.A. Ebert, D.W. Benson.
Atelectasis and Surface Tension Properties of Lung Extracts Following Positive Pressure Ventilation and Overinflation.
Surg Forum, 14 (1963), pp. 239-240
[9.]
L. Gattinoni, A. Pesenti.
The concept of “baby lung”.
Intensive Care Med, 31 (2005), pp. 776-784
[10.]
D. Dreyfuss, P. Soler, G. Basset, G. Saumon.
High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive endexpiratory pressure.
Am Rev Respir Dis, 137 (1998), pp. 1159-1164
[11.]
T.C. Corbridge, L.D. Wood, G.P. Crawford, M.J. Chudoba, J. Yanos, J.I. Sznajder.
Adverse effects of large tidal volume and low PEEP in canine acid aspiration.
Am Rev Respir Dis, 142 (1990), pp. 311-315
[12.]
L.N. Tremblay, A.S. Slutsky.
Ventilator-induced injury: from barotrauma to biotrauma.
Proc Assoc Am Physicians, 110 (1998), pp. 482-488
[13.]
Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome.
The Acute Respiratory Distress Syndrome Network.
N Engl J Med, 342 (2000), pp. 1301-1308
[14.]
F. Wartha, B. Henriques-Normark.
ETosis: a novel cell death pathway.
Sci Signal, 1 (2008), pp. pe25
[15.]
A. Vesela, J. Wilhelm.
The role of carbon dioxide in free radical reactions of the organism.
Physiol Res, 51 (2002), pp. 335-339
[16.]
J.G. Laffey, M. Tanaka, D. Engelberts, X. Luo, S. Yuan, A.K. Tanswell, et al.
Therapeutic hypercapnia reduces pulmonary and systemic injury following in vivo lung reperfusion.
Am J Respir Crit Care Med, 162 (2000), pp. 2287-2294
[17.]
J.D. Lang, M. Figueroa, K.D. Sanders, M. Aslan, Y. Liu, P. Chumley, et al.
Hypercapnia via reduced rate and tidal volume contributes to lipopolysaccharide-induced lung injury.
Am J Respir Crit Care Med, 171 (2005), pp. 147-157
[18.]
J.A. Frank, P.E. Parsons, M.A. Matthay.
Pathogenetic significance of biological markers of ventilator-associated lung injury in experimental and clinical studies.
Chest, 130 (2006), pp. 1906-1914
[19.]
D. Dreyfuss, J.D. Ricard, G. Saumon.
On the physiologic and clinical relevance of lungborne cytokines during ventilator-induced lung injury.
Am J Respir Crit Care Med, 167 (2003), pp. 1467-1471
[20.]
R.A. Oeckler, R.D. Hubmayr.
Ventilator-associated lung injury: a search for better therapeutic targets.
Eur Respir J, 30 (2007), pp. 1216-1226
[21.]
R.J. Coakley, C. Taggart, C. Greene, N.G. McElvaney, S.J. O’Neill.
Ambient pCO2 modulates intracellular pH, intracellular oxidant generation, and interleukin-8 secretion in human neutrophils.
J Leukoc Biol, 71 (2002), pp. 603-610
[22.]
Y. Liu, B.K. Chacko, A. Ricksecker, R. Shingarev, E. Andrews, R.P. Patel, et al.
Modulatory effects of hypercapnia on in vitro and in vivo pulmonary endothelial-neutrophil adhesive responses during inflammation.
Cytokine, 44 (2008), pp. 108-117
[23.]
F. Frutos-Vivar, N. Nin, A. Esteban.
Epidemiology of acute lung injury and acute respiratory distress syndrome.
Curr Opin Crit Care, 10 (2004), pp. 1-6
[24.]
M. Chopra, J.S. Reuben, A.C. Sharma.
Acute lung injury:apoptosis and signaling mechanisms.
Exp Biol Med (Maywood), 234 (2009), pp. 361-371
[25.]
G. Matute-Bello, W.C. Liles, K.P. Steinberg, P.A. Kiener, S. Mongovin, E.Y. Chi, et al.
Soluble Fas ligand induces epithelial cell apoptosis in humans with acute lung injury (ARDS).
J Immunol, 163 (1999), pp. 2217-2225
[26.]
O. Gajic, J. Lee, C.H. Doerr, J.C. Berrios, J.L. Myers, R.D. Hubmayr.
Ventilator-induced cell wounding and repair in the intact lung.
Am J Respir Crit Care Med, 167 (2003), pp. 1057-1063
[27.]
R. Lucas, A.D. Verin, S.M. Black, J.D. Catravas.
Regulators of endothelial and epithelial barrier integrity and function in acute lung injury.
Biochem Pharmacol, 77 (2009), pp. 1763-1772
[28.]
A. Leask, D.J. Abraham.
TGF-beta signaling and the fibrotic response.
Faseb J, 18 (2004), pp. 816-827
[29.]
A.E. Schmelzer, W.M. Miller.
Hyperosmotic stress and elevated pCO2 alter monoclonal antibody charge distribution and monosaccharide content.
Biotechnol Prog, 18 (2002), pp. 346-353
[30.]
V.M. deZengotita, L.R. Abston, A.E. Schmelzer, S. Shaw, W.M. Miller.
Selected amino acids protect hybridoma and CHO cells from elevated carbon dioxide and osmolality.
Biotechnol Bioeng, 78 (2002), pp. 741-752
[31.]
C.H. Doerr, O. Gajic, J.C. Berrios, S. Caples, M. Abdel, J.F. Lymp, et al.
Hypercapnic Acidosis Impairs Plasma Membrane Wound Resealing in Ventilator Injured Lungs.
Am J Respir Crit Care Med, (2005),
[32.]
C.H. Doerr, O. Gajic, J.C. Berrios, S. Caples, M. Abdel, J.F. Lymp, et al.
Hypercapnic acidosis impairs plasma membrane wound resealing in ventilator-injured lungs.
Am J Respir Crit Care Med, 171 (2005), pp. 1371-1377
[33.]
D. O’Toole, P. Hassett, M. Contreras, B. Higgins, S.T. McKeown, D.F. McAuley, et al.
Hypercapnic acidosis attenuates pulmonary epithelial wound repair by an NF- {kappa}B dependent mechanism.
Thorax, (2009),
[34.]
K.H. Albertine, M.F. Soulier, Z. Wang, A. Ishizaka, S. Hashimoto, G.A. Zimmerman, et al.
Fas and fas ligand are up-regulated in pulmonary edema fluid and lung tissue of patients with acute lung injury and the acute respiratory distress syndrome.
Am J Pathol, 2161 (2002), pp. 1783-1796
[35.]
J.D. Lang, P. Chumley, J.P. Eiserich, A. Estevez, T. Bamberg, A. Adhami, et al.
Hypercapnia induces injury to alveolar epithelial cells via a nitric oxide-dependent pathway.
Am J Physiol Lung Cell Mol Physiol, 279 (2000), pp. L994-L1002
[36.]
L.B. Ware, M.A. Matthay.
The acute respiratory distress syndrome.
N Engl J Med, 342 (2000), pp. 1334-1349
[37.]
R.A. Vertrees, R. Nason, M.D. Hold, A.M. Leeth, F.C. Schmalstieg, P.J. Boor, et al.
Smoke/ burn injury-induced respiratory failure elicits apoptosis in ovine lungs and cultured lung cells, ameliorated with arteriovenous CO2 removal.
Chest, 125 (2004), pp. 1472-1482
[38.]
D.G. Ashbaugh, D.B. Bigelow, T.L. Petty, B.E. Levine.
Acute respiratory distress in adults.
Lancet, 2 (1967), pp. 319-323
[39.]
J.G. Laffey, D.O. Croinin, P. McLoughlin, B.P. Kavanagh.
Permissive hypercapnia–role in protective lung ventilatory strategies.
Intensive Care Med, 30 (2004), pp. 347-356
[40.]
F. Feihl, P. Eckert, S. Brimioulle, O. Jacobs, M.D. Schaller, C. Melot, et al.
Permissive hypercapnia impairs pulmonary gas exchange in the acute respiratory distress syndrome.
Am J Respir Crit Care Med, 162 (2000), pp. 209-215
[41.]
B. Pfeiffer, T. Hachenberg, M. Wendt, B. Marshall.
Mechanical ventilation with permissive hypercapnia increases intrapulmonary shunt in septic and nonseptic patients with acute respiratory distress syndrome.
Crit Care Med, 30 (2002), pp. 285-289
[42.]
L.B. Ware, M.A. Matthay.
Alveolar fluid clearance is impaired in the majority of patients with acute lung injury and the acute respiratory distress syndrome.
Am J Respir Crit Care Med, 163 (2001), pp. 1376-1383
[43.]
J.I. Sznajder.
Alveolar edema must be cleared for the acute respiratory distress syndrome patient to survive.
Am J Respir Crit Care Med, 163 (2001), pp. 1293-1294
[44.]
L.A. Dada, J.I. Sznajder.
Mechanisms of pulmonary edema clearance during acute hypoxemic respiratory failure: role of the Na,K-ATPase.
Crit Care Med, 31 (2003), pp. S248-S252
[45.]
J. Litvan, A. Briva, M.S. Wilson, G.R. Budinger, J.I. Sznajder, K.M. Ridge.
Beta-adrenergic receptor stimulation and adenoviral overexpression of superoxide dismutase prevent the hypoxia-mediated decrease in Na,K-ATPase and alveolar fluid reabsorption.
J Biol Chem, 281 (2006), pp. 19892-19898
[46.]
A. Comellas, P.A. Briva, L.A. Dada, M.L. Butti, H.E. Trejo, C. Yshii, et al.
Endothelin-1 impairs alveolar epithelial function via endothelial ETB receptor.
Am J Respir Crit Care Med, 179 (2009), pp. 113-122
[47.]
E. Lecuona, F. Saldias, A. Comellas, K. Ridge, C. Guerrero, J.I. Sznajder.
Ventilator-associated lung injury decreases lung ability to clear edema in rats.
Am J Respir Crit Care Med, 159 (1999), pp. 603-609
[48.]
A. Briva, I. Vadasz, E. Lecuona, L.C. Welch, J. Chen, L.A. Dada, et al.
High CO2 levels impair alveolar epithelial function independently of pH.
[49.]
I. Vadasz, L.A. Dada, A. Briva, H.E. Trejo, L.C. Welch, J. Chen, et al.
AMP-activated protein kinase regulates CO2-induced alveolar epithelial dysfunction in rats and human cells by promoting Na,K-ATPase endocytosis.
J Clin Invest, 118 (2008), pp. 752-762
[50.]
D.L. Dixon, H.A. Barr, A.D. Bersten, I.R. Doyle.
Intracellular storage of surfactant and proinflammatory cytokines in co-cultured alveolar epithelium and macrophages in response to increasing CO2 and cyclic cell stretch.
Exp Lung Res, 34 (2008), pp. 37-47
[51.]
J. Aragones, P. Fraisl, M. Baes, P. Carmeliet.
Oxygen sensors at the crossroad of metabolism.
Cell Metab, 9 (2009), pp. 11-22
[52.]
D.A. Kregenow, G.D. Rubenfeld, L.D. Hudson, E.R. Swenson.
Hypercapnic acidosis and mortality in acute lung injury.
Crit Care Med, 34 (2006), pp. 1-7
[53.]
A.F. Connors, N.V. Dawson, C. Thomas, F.E. Harrell, N. Desbiens, W.J. Fulkerson, et al.
Outcomes following acute exacerbation of severe chronic obstructive lung disease. The SUPPORT investigators (Study to Understand Prognoses and Preferences for Outcomes and Risks of Treatments).
Am J Respir Crit Care Med, 154 (1996), pp. 959-967
[54.]
J.S. Garland, R.K. Buck, E.N. Allred, A. Leviton.
Hypocarbia before surfactant therapy appears to increase bronchopulmonary dysplasia risk in infants with respiratory distress syndrome.
Arch Pediatr Adolesc Med, 149 (1995), pp. 617-622
[55.]
T.E. Cerling, J.R. Ehleringer, J.M. Harris.
Carbon dioxide starvation, the development of C4 ecosystems, and mammalian evolution.
Philos Trans R Soc Lond B Biol Sci, 353 (1998), pp. 159-170
[56.]
K. Sharabi, A. Hurwitz, A.J. Simon, G.J. Beitel, R.I. Morimoto, G. Rechavi, et al.
Elevated CO2 levels affect development, motility, and fertility and extend life span in Caenorhabditis elegans.
Proc Natl Acad Sci U S A, 106 (2009), pp. 4024-4029
[57.]
I.T. Helenius, T. Krupinski, D.W. Turnbull, Y. Gruenbaum, N. Silverman, E.A. Johnson, et al.
Elevated CO2 suppresses specific Drosophila innate immune responses and resistance to bacterial infection.
Proc Natl Acad Sci U S A, (2009),
[58.]
K. Sharabi, E. Lecuona, I.T. Helenius, G. Beitel, J.I. Sznajder, Y. Gruenbaum.
Sensing, physiological effects and molecular response to elevated CO(2) levels in eukaryotes.
J Cell Mol Med, (2009),
Copyright © 2010. Sociedad Española de Neumología y Cirugía Torácica
Archivos de Bronconeumología
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?