Journal Information
Vol. 40. Issue 5.
Pages 222-230 (May 2004)
Share
Share
Download PDF
More article options
Vol. 40. Issue 5.
Pages 222-230 (May 2004)
Full text access
Óxido nítrico nasal
Visits
24326
C. Serrano, A. Valero, C. Picado
Corresponding author
cpicado@clinic.ub.es

Correspondencia: Unidad de Alergia. Servicio de Neumología y Alergia Respiratoria. Hospital Clínic. Villarroel, 170. 08036 Barcelona. España
Unidad de Alergia. Servicio de Neumología y Alergia Respiratoria. Hospital Clínic. Barcelona. España
This item has received
Article information
Full text is only aviable in PDF
bibliografía
[1.]
G. Djupesland Per, J.M. Chatkin, W. Qian, J.S.J. Haight.
Nitric oxide in the nasal airway: a new dimension in otorhinolaryngology.
Am J Otolaryngol, 22 (2001), pp. 19-32
[2.]
F.L.M. Ricciardolo.
Multiple roles of nitric oxide in the airways.
Thorax, 58 (2003), pp. 175-182
[3.]
J.O.N. Lundberg, J. Rinder, E. Weitzberg, J.M. Lundberg, K. Alving.
Nasally exhaled nitric oxide in humans originates mainly in the paranasal sinuses.
Acta Physiol Scand, 152 (1994), pp. 431-432
[4.]
K. Lewandowiski, T. Busch, H. Lohbrunner, S. Rensing, U. Keske, H. Gerlach, et al.
Low nitric oxide concentrations in exhaled gas and nasal airways of mammals without paranasal sinuses.
J Appl Physiol, 85(Suppl 2) (1998), pp. 405-410
[5.]
M.K. Al-Ali, P.H. Howarth.
Nitric oxide and the respiratory system in health and disease.
Respir Med, 92 (1998), pp. 701-715
[6.]
J.A. Andersson, A. Cervin, S. Lindberg, R. Uddman, L.O. Cardell.
The paranasal sinuses as reservoirs for nitric oxide.
Acta Otolaringol, 122 (2002), pp. 861-865
[7.]
M. Pasto, E. Serrano, E. Urocoste, M.A. Barbacanne, A. Guissani, A. Didier, et al.
Nasal polyp-derived superoxide anion: dose-dependent inhibition by nitric oxide and pathophysiological implications.
Am J Respir Crit Care Med, 163 (2001), pp. 145-151
[8.]
M. Deja, T. Busch, S. Bachmann, K. Riskowski, V. Campean, B. Wiedmann, et al.
Reduced nitric oxide in sinus epithelium of patients with radiologic maxillary sinusitis and sepsis.
Am J Respir Crit Care Med, 168 (2003), pp. 281-286
[9.]
E. Baraldi, N.M. Azzolin, P. Biban, F. Zacchello.
Effect of antibiotic therapy on nasal nitric oxide concentration in children with acute sinusitis.
Am J Respir Crit Care Med, 155 (1997), pp. 1680-1683
[10.]
E.A. Ferguson, R. Eccles.
Changes in nasal nitric oxide concentration associated with symptoms of common cold and treatment with a topical nasal decongestant.
Acta Otolaryngol, 117 (1997), pp. 614-617
[11.]
D.A. Gentile, W.J. Doyle, S. Belenky, H. Ranch, B. Angelini, D.P. Skoner.
Nasal and oral nitric oxide levels during experimental respiratory syncytial virus infection of adults.
Acta Otolaryngol, 122 (2002), pp. 61-66
[12.]
S. Kharitonov, K. Rajaulasingam, B. O'Connor, S.R. Durham, P.J. Barnes.
Nasal nitric oxide is increased in patients with asthma and allergic rhinitis and may be modulated by nasal corticosteroids.
J Allergy Clin Immunol, 99 (1997), pp. 58-64
[13.]
J.F. Arnal, A. Didier, J. Rami, C. Rini, J.P. Charlet, E. Serrano, et al.
Nasal nitric oxide is increased in allergic rhinitis.
Clin Exp Allergy, 27 (1996), pp. 358-362
[14.]
P.G. Djupesland, J.M. Chatkin, W. Qian, J.S. Haight.
Aerodynamic influences on nasal nitric oxide output measurements.
Acta Otolaryngol, 119 (1999), pp. 479-485
[15.]
H. Kawamoto, S. Takeno, M. Takumida, H. Watanabe, K. Yajin.
Increased expression of inducible nitric oxide synthase in nasal epithelial cells in patients with allergic rhinitis.
Laringoscope, 109 (1999), pp. 2015-2020
[16.]
P.E. Silkoff, Y. Roth, P. McClean, P. Cole, J. Chapnik, N. Zamel.
Nasal nitric oxide does not control basal nasal patency or acute congestion following allergen challenge in allergic rhinitis.
Ann Otol Rhinol Laringol, 108 (1999), pp. 368-372
[17.]
J.O. Lundberg, E. Weitzberg, J. Rinder, A. Rudehill, O. Jansson, N.P. Wiklund, et al.
Calcium-independent and steroid resistant nitric oxide synthase activity in human paranasal sinus mucosa.
Eur Respir J, 9 (1996), pp. 1344-1347
[18.]
J.P. Palm, K. Alving, J.O. Lundberg.
Characterization of airway nitric oxide in allergic rhinitis: the effect of intranasal administration of L-name.
Allergy, 58 (2003), pp. 885-892
[19.]
Recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide in adults and children-1999.
Am J Respir Crit Care Med, 160 (1999), pp. 2104-2217
[20.]
E.A. Ferguson, R. Eccles.
Relationship between nasal nitric oxide concentration and nasal airway resistance.
Rhinology, 35 (1997), pp. 120-123
[21.]
M. Maniscalco, M. Sofía, L. Carratú, T. Higenbottam.
Effect of nitric oxide inhibition on nasal airway resistance after nasal allergen challenge in allergic rhinitis.
Eur J Clin Invest, 31 (2001), pp. 462-466
[22.]
C. Vural, A. Gungor.
Variations of nasal nitric oxide in a subject with allergic rhinitis: a longitudinal study.
Am J Otolaryngol, 23 (2002), pp. 191-195
[23.]
I. Ramis, J. Lorente, J. Roselló-Catafau, P. Quesada, E. Gelpi, O. Bulbena.
Differential activity of nitric oxide synthase in human nasal mucosa and polyps.
Eur Respir J, 9 (1996), pp. 202-206
[24.]
S. Jiang, Z. Dong, Z. Yang.
Expression of the inducible isoform of nitric oxide synthase mRNA and the role in nasal polyps.
Zhonghua Er Bi Yan Hou Ke Za Zhi, 36 (2001), pp. 298-300
[25.]
A. Parikh, G.K. Scadding, P. Gray, M.G. Belvisi, J.A. Mitchell.
High levels of nitric oxide synthase activity are associated with nasal polyp tissue from aspirin sensitive asthmatics.
Acta Otolaryngol, 122 (2002), pp. 302-305
[26.]
D. Colantonio, L. Brouillette, A. Parikh, G.K. Scadding.
Parodoxical low nasal nitric oxide in nasal polyposis.
Clin Exp Allergy, 32 (2002), pp. 698-701
[27.]
J.F. Arnal, P. Flores, J. Rami, M. Murris-Espin, F. Bremont, I. Pasto, et al.
Nasal nitric oxide concentration in paranasal sinus inflammatory diseases.
Eur Respir J, 13 (1999), pp. 307-312
[28.]
H. Hebestreit, B. Dibbert, I. Balatti, D. Braun, A. Schapowal, K. Blaser, et al.
Disruption of fas-receptor signaling by nitric oxide in eosinophils.
J Exp Med, 187 (1998), pp. 415-425
[29.]
H.U. Simon, S. Yousefi, C. Schranz, A. Schapowal, C. Bachert, K. Blaser.
Direct demonstration of delayed eosinophil apoptosis as a mechanism causing tissue eosinophilia.
J Immunol, 187 (1997), pp. 415-425
[30.]
R. Djukanovic, C. Lai, J. Wilson, K. Britten, S. Wilson, W. Roche, et al.
Bronchial mucosa manifestation of atopy: a comparison of markers of inflammation between atopic asthmatics, atopic non asthmatics and healthy controls.
Eur Respir J, 5 (1992), pp. 538-544
[31.]
G.J. Braunstahl, W.J. Fokkens, S.E. Overbeek, A. Klein Jan, H.C. Hoogsteden, J.B. Prins.
Mucosal and systemic inflammatory changes in allergic rhinitis and asthma:a comparison between upper and lower airways.
Clin Exp Allergy, 33 (2003), pp. 579-587
[32.]
G.-.J. Braunstahl, S. Overbeek, A. Klein Jan, J.B. Prins, H.C. Hoogsteden, W.J. Fokkens.
Nasal allergen provocation induces adhesion molecules expression and tissue eosinophilia in upper and lower airways.
J Allergy Clin Immunol, 107 (2001), pp. 469-476
[33.]
G.J. Braunstahl, S. Overbeek, A. Klein Jan, J.B. Prins, H.C. Hoogsteden, W.J. Fokkens.
Segmental bronchial provocation induces nasal inflammation in allergic rhinitis patients.
Am J Respir Crit Care Med, 161 (2000), pp. 2051-2057
[34.]
A.M. Kirsten, R.A. Jorres, D. Kirsten, H. Magnussen.
Comparison of nasal and bronchial production of nitric oxide in healthy probands and patients with asthma.
Pneumologie, 51 (1997), pp. 359-364
[35.]
T. Wodehouse, S.A. Kharitonov, I.S. Mackay, P.J. Barnes, R. Wilson, P.J. Cole.
Nasal nitric oxide measurements for the screening of primary ciliary dyskinesia.
Eur Respir J, 21 (2003), pp. 43-47
[36.]
H. Grasemann, S.S. Gärtig, H.G. Wiesemann, H. Teschler, N. Konietzko, F. Ratjen.
Effect of L-arginine infusion on airway NO in cystic fibrosis and primary ciliary dyskinesia.
Eur Respir J, 13 (1999), pp. 114-118
[37.]
S. Thomas, S. Kharitonov, S. Scott, M. Hodson, P.J. Barnes.
Nasal and exhaled nitric oxide is reduced in adult patients with cystic fibrosis and does not correlate with cystic fibrosis genotype.
Chest, 117 (2000), pp. 1085-1089
[38.]
I. Hovarth, S. Loukides, T. Wodehouse, E. Csiszer, P.J. Cole, S. Kharitonov, et al.
Comparison of exhaled and nasal nitric oxide and exhaled carbon monoxide levels in bronchiectatic patients with and without primary ciliary dyskinesia.
Thorax, 58 (2003), pp. 68-72
[39.]
J.O. Lunberg.
Nitric oxide in the nasal airways.
Eur Respir Rev, 68 (1999), pp. 241-245
[40.]
P.E. Silkoff, P.A. McClean, A.S. Slutski, H.G. Furlott, S. Hoffstein, S. Wakita, et al.
Marked flow-dependence of exhaled nitric oxide using a new technique to exclude nasal nitric oxide.
Am J Respir Crit Care Med, 155 (1997), pp. 260-267
[41.]
P.G. Djupesland, J.M. Chatkin, W. Qian, P. McClean, P. Cole, N. Zamel, et al.
Aerodynamic influences on nasal nitric oxide output measurement.
Acta Otolaryngol, 119 (1999), pp. 479-485
[42.]
W. Qian, P.J. Djupesland, J.M. Chatkin, P. McClean, H. Furlott, J.S. Chapnik, et al.
Aspiration flow optimized for nasal nitric oxide measurement.
Rhinology, 37 (1998), pp. 61-65
[43.]
J.M. Chatkin, P.G. Djupesland, W. Qian, P. McClean, H. Furlott, C. Gutiérrez, et al.
Nasal nitric oxide is independent of nasal cavity volume.
Am J Rhinol, 159 (1999), pp. 179-184
[44.]
W. Qian, R. Sabo, O. Mikael, J. Haight, R. Fenton.
Nasal nitric oxide and nasal cycle.
Laryngoscope, 111 (2001), pp. 1603-1607
[45.]
D.C. Chambers, D. Carpenter, J.G. Ayres.
Exchange dynamics of nitric oxide in the human nose.
J Appl Physiol, 91 (2001), pp. 1924-1930
[46.]
J.O.N. Lundberg, T. Farkas-Szallasi, E. Weitzberg, J. Rinder, J. Lidholm, A. Anggaard, et al.
High nitric oxide in human paranasal sinuses.
Nat Med, 1 (1995), pp. 370-373
[47.]
M. Jorissen, L. Lefevere, T. Willems.
Nasal nitric oxide.
Allergy, 56 (2001), pp. 1026-1033
[48.]
P.E. Silkoff, R.A. Robbins, B. Gaston, J.O. Lundberg, R.G. Townley.
Endogenous nitric oxide in allergic airway disease.
J Allergy Clin Immunol, 105 (2000), pp. 438-448
[49.]
C.R. Philips, G.D. Giraud, W.E. Holden.
Exhaled nitric oxide during exercise:site of release and modulation by ventilation and blood flow.
J Appl Phisiol, 80 (1996), pp. 1865-1871
[50.]
M. Imada, J. Iwamoto, S. Nonaka, Y. Kobayashi, T. Unno.
Measurement of nitric oxide in human nasal airway.
Eur Respir J, 9 (1996), pp. 169-179
[51.]
J.O. Lunberg, J. Rinder, F. Weitzberg, K. Alving, J.M. Lunberg.
Heavy physical exercise decreases nitric oxide levels in the nasal airways in humans.
Acta Physiol Scand, 159 (1997), pp. 51-57
[52.]
J. Rinder, J.O. Lunberg, A. Änggärd, K. Alving, J.M. Lunberg.
Effects of topical decongestants, L-arginine and nitric oxide synthase inhibition on nasal cavity nitric oxide levels and nasal cavity volume in man.
Am J Rhinol, 10 (1996), pp. 399-408
[53.]
G.J. Westerveld, H.P. Voss, R.M. Van der Hee, G.J. De Haan-Koelewijn, G.J. Den Hartog, R.A. Scheeren, et al.
Inhibition of nitric oxide synthase by nasal decongestants.
Eur Respir J, 16 (2000), pp. 437-444
[54.]
W. Qian, A. Graciano, J.S. Haight, P. McClean, N. Zamel, J.S. Chapnik.
Nasal nitric oxide is not altered by topical anesthesia.
Am J Rhinol, 14 (2000), pp. 121-124
[55.]
W.C. Dillon, V. Hampl, P.J. Shultz, J.B. Rubins, S.L. Archer.
Origins of breath nitric oxide in humans.
Chest, 110 (1996), pp. 930-938
[56.]
E. Weitzberg, J.O. Lundberg.
Humming greatly increases nasal nitric oxide.
Am J Respir Crit Care Med, 166 (2002), pp. 131-132
Copyright © 2004. Sociedad Española de Neumología y Cirugía Torácica
Archivos de Bronconeumología
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?