Journal Information
Vol. 43. Issue 4.
Pages 225-232 (April 2007)
Share
Share
Download PDF
More article options
Vol. 43. Issue 4.
Pages 225-232 (April 2007)
Review Article
Full text access
Innovative Strategies to Diagnose and Monitor Tuberculosis Patients
Visits
4236
José Prisco Palma-Nicolása, Virgilio Bocanegra-Garcíab,
Corresponding author
vbocanegra@uat.edu.mx

Correspondence: Dr. V. Bocanegra-García. Calle 16 y Lago de Chapala. Fracc. Aztlán. 88740 Reynosa. Tamaulipas. México
a Departamento de Inmunología, Instituto de Investigaciones Biomédicas, UNAM, México DF, México
b Departamento de Biología Molecular y Bioingeniería, UAM Reynosa Aztlán, UAT, Reynosa, Tamaulipas, México
This item has received
Article information

Mycobacterium tuberculosis is the single most deadly microorganism worldwide. A third of the world population is thought to have latent tuberculosis and approximately 2 million people die of the disease each year. Short and closely supervised treatment regimens are needed, but it is also essential to develop new strategies to ensure prompt diagnosis of the disease. In particular, cheap methods are needed to tackle tuberculosis from a population perspective. The present article reviews the advances in immunology and molecular strategies for epidemiological diagnosis and monitoring of tuberculosis patients.

Key words:
Mycobacterium tuberculosis
Mimotopes MIRU-VNTR Hsp65
IS6110
Diagnosis

Mycobacterium tuberculosis es el microorganismo que por sí solo ha ocasionado el mayor número de muertes a escala mundial. Se estima que la tercera parte de la población mundial presenta tuberculosis latente, y cada año mueren alrededor de 2 millones de personas en todo el mundo. Además de la aplicación rigurosa del tratamiento acortado y estrictamente supervisado, es imperativo el desarrollo y aplicación de nuevas estrategias que permitan el diagnóstico oportuno de la enfermedad, particularmente de métodos de bajo coste que permitan abordar la problemática de la tuberculosis desde una perspectiva poblacional. En el presente trabajo se revisan los avances en las estrategias inmunológicas y moleculares para el diagnóstico y seguimiento epidemiológico de los pacientes tuberculosos.

Palabras clave:
Mycobacterium tuberculosis
Mimótopos
MIRU-VNTR
Hsp65
IS6110
Diagnóstico
Full text is only available in PDF
References
[1]
CB Inderlied, CA Kemper, LE Bermúdez.
The Mycobacterium avium complex.
Clin Microbiol Rev, 6 (1993), pp. 266-310
[2]
Global tuberculosis control: surveillance, planning, financing. WHO report 2006. Geneva, World Health Organization (WHO/HTM/TB/2006.362).
[3]
G Collette, M Bourhaba, M Moutschen.
Should the BCG vaccine still berecommended?.
Rev Med Liege, 61 (2006), pp. 430-432
[4]
S Vanderschueren, W Peetermans, H Bobbaers.
Is BCG vaccination against tuberculosis still indicated?.
Acta Clin Belg, 49 (1994), pp. 138-147
[5]
BB Trunz, P Fine, C Dye.
Effect of BCG vaccination on childhood tuberculous meningitis and miliary tuberculosis worldwide: a metaanalysis and assessment of cost-effectiveness.
Lancet, 367 (2006), pp. 1173-1180
[6]
S Puvacic, J Dizdarevic, Z Santic, M Mulaomerovic.
Protective effect of neonatal BCG vaccines against tuberculous meningitis.
Bosn J Basic Med Sci, 4 (2004), pp. 46-49
[7]
Sistema Nacional de Vigilancia Epidemiológica.
Sistema Único de Información. Secretaría de Salud.
Epidemiología, 29 (2006), pp. 5-6
[8]
INDRE.
Manual de técnicas de laboratorio para el examen baciloscópico, 1st ed., INDRE, (2003),
[9]
Escobar Gutiérrez A, editor. Manual de procedimientos de laboratorio n.° 18 INDRE/SAGAR: tuberculosis. México, DF: Secretaría de Salud, Secretaría de Agricultura, Ganadería y Desarrollo Rural, Organización Panamericana de la Salud; 1996.
[10]
E García-Pachón, JC Rodríguez.
Epidemiología molecular de la tuberculosis: principales hallazgos y su aplicación en España.
Arch Bronconeumol, 41 (2005), pp. 618-624
[11]
RE Weir, GF Black, B Nazareth, S Floyd, S Stenson, C Stanley, K Branson, L Sichali, SD Chaguluka, L Donovan, AC Crampin, PE Fine, HM Dockrell.
The influence of previous exposure to environmental mycobacteria on the interferon-gamma response to bacille Calmette-Guerin vaccination in southern England and northern Malawi.
Clin Exp Immunol, 146 (2006), pp. 390-399
[12]
R Prasad, G Yadav.
Identification of a 75 kDa highly immunodominant antigen from Mycobacterium smegmatis and cross-reactivity with other species.
Indian J Exp Biol, 39 (2001), pp. 255-262
[13]
F Oftung, E Borka, G Kvalheim, AS Mustafa.
Mycobacterial crossreactivity of M. tuberculosis reactive T cell clones from naturally converted PPD positive healthy subjects.
FEMS Immunol Med Microbiol, 20 (1998), pp. 231-238
[14]
K Lyashchenko, R Colangeli, M Houde, HA Jahdali, D Menzies, ML Gennaro.
Heterogeneous antibody responses in tuberculosis.
Infect Immun, 66 (1998), pp. 3936-3940
[15]
EGL Wilkins.
The serodiagnosis of tuberculosis.
Clinical tuberculosis, pp. 367-380
[16]
VMC Silva, G Kanaujia, ML Gennaro, D Menzies.
Factors associated with humoral response to ESAT-6, 38 kDa and 14kDa in patients with a spectrum of tuberculosis.
Int J Tuberc Lung Dis, 7 (2003), pp. 478-484
[17]
DC Dillon, MR Alderson, CH Day, T Bement, A Campos Neto, YAW Skeiky, et al.
Molecular and immunological characterization of Mycobacterium tuberculosis CFP-10, and immunodiagnostic antigen missing in Mycobacterium bovis-BCG.
J Clin Microbiol, 38 (2000), pp. 3285-3290
[18]
KR Uma Devi, B Ramalingam, A Raja.
Antibody response to Mycobacterium tuberculosis and 16kDa antigens in pulmonary tuberculosis with human immunodeficiency virus coinfection.
Diagn Microbiol Infect Dis, 46 (2003), pp. 205-209
[19]
E Sada, L Ferguson, TM Daniel.
An enzyme-linked immunosorbent assay (ELISA) for the serodiagnosis of tuberculosis using a 30,000 dalton native antigen of Mycobacterium tuberculosis.
J Infect Dis, 162 (1990), pp. 928-931
[20]
C Espitia, I Cervera, R Gonzales, R Mancilla.
A 38 kDa Mycobacterium tuberculosis antigen associated with infection. Its isolation and serological evaluation.
Clin Exp Immunol, 77 (1989), pp. 373-377
[21]
B Ramalingam, KR Uma Devi, A Raja.
Isotype-specific anti-38 and 27 kDa (mpt51) response in pulmonary tuberculosis with human immunodeficiency virus coinfection.
Scand J Infect Dis, 35 (2003), pp. 234-239
[22]
MJ Lodes, DC Dillon, R Mohamath, CH Day, DR Benson, LD Reynolds, et al.
Serological expression cloning and immunological evaluation of MTB48, a novel Mycobaterium tuberculosis antigen.
J Clin Microbiol, 39 (2001), pp. 2485-2493
[23]
K Welding, I Rosenkrands, LM Okkels, TM Doherty, P Andersen.
Assessing the serodiagnostic potential of 35 Mycobacterium tuberculosis proteins and identification of four novel serological antigens.
J Clin Microbiol, 43 (2005), pp. 57-65
[24]
RC Hendrickson, JF Douglass, LD Reynolds, PD McNeill, D Carter, SG Reed, et al.
Mass spectrometric identification of Mtb81, a novel serological marker for tuberculosis.
J Clin Microbiol, 38 (2000), pp. 2354-2361
[25]
S Mukherjee, N Daifalla, Y Zhang, J Douglass, L Brooks, T Vedvick, et al.
Potential serological use of a recombinant protein that is a replica of a Mycobacterium tuberculosis protein found in the urine of infected mice.
Clin Diagn Lab Immunol, 11 (2004), pp. 280-286
[26]
RL Houghton, MJ Lodes, DC Dillon, LD Reynolds, CH Day, PD McNeill, et al.
Use of multiepitope polyproteins in serodiagnosis of active tuberculosis.
Clin Diag Lab Immunol, 9 (2002), pp. 883-891
[27]
PJ Cardona, E Julián, X Vallés, S Gordillo, M Muñoz, M Luquin, et al.
Production of antibodies against glycolipids from the Mycobacterium tuberculosis cell wall in aerosol murine models of tuberculosis.
Scand J Immunol, 55 (2002), pp. 639-645
[28]
Y Fujita, T Doi, K Sato, I Yano.
Diverse humoral immune response and changes in IgG antibody levels against mycobacterial lipid antigens in active tuberculosis.
Microbiol, 151 (2005), pp. 2065-2074
[29]
PH Cruaud, C Berlie, J Torgal-García, F Pappa, HL David.
Human IgG antibodies immunoreacting with specific sulfolipids from Mycobacterium tuberculosis.
Zentbl Bakteriol, 271 (1989), pp. 481-485
[30]
C Savage, P Vincent, H Leclerc.
Serodiagnosis of tuberculosis. Evaluation of a sulpholipid antigen.
Zentbl Bakteriol, 278 (1993), pp. 49-57
[31]
L Escamilla, R Mancilla, W Glender, LM López-Marín.
Mycobacterium fortuitum glycolipids for the serodiagnosis of pulmonary tuberculosis.
Am J Respir Crit Care Med, 154 (1996), pp. 1864-1867
[32]
E Julián, L Matas, A Pérez, J Alcaide, MA Lanéelle, M Luquin.
Serodiagnosis of tuberculosis: comparison of immunoglobulin A (IgA) response to sulfolipid I with IgG and IgM responses to 2,3-diacyltrehalose, 2,3,6-triacyltrehalose, and cord factor antigens.
J Clin Microbiol, 40 (2002), pp. 3782-3788
[33]
LM López-Marín, E Segura, C Hermida-Escobedo, A Lemassu, MC Salinas-Carmona.
6,6′-dimycoloyl trehalose from a rapidly growing Mycobacterium: an alternative antigen for tuberculosis serodiagnosis.
FEMS Immunol Med Microbiol, 36 (2003), pp. 47-54
[34]
AO Sousa, S Henry, FM Marója, FK Lee, L Brum, M Singh, et al.
IgG subclass distribution of antibody responses to protein and polysaccharide mycobacterial antigens in leprosy and tuberculosis.
Clin Exp Immunol, 111 (1998), pp. 48-55
[35]
TA Tessema, B Hamassur, G Bjune, S Svenson, B Bjorvatn.
Diagnostic evaluation of urinary lipoarabinomannan at an Ethiopian Tuberculosis Centre.
Scand J Infect Dis, 33 (2001), pp. 279-284
[36]
J Nigou, M Guilleron, G Puzo.
Lipoarabinomannans: from structure to biosynthesis.
Biochimie, 85 (2003), pp. 153-166
[37]
ED Chan, R Reves, JT Belisle, PJ Brennan, W Hahn.
Diagnosis of tuberculosis by visually detectable immunoassay for lipoarabinomannan.
Am J Respir Crit Care Med, 161 (2000), pp. 1713-1719
[38]
RA Miller, S Dissanayake, TM Buchanan.
Development of an enzymelinked immunosorbent assay using arabinomannan from Mycobacterium smegmatis: a potentially useful screening test for the diagnosis of incubating leprosy.
Am J Trop Med Hyg, 32 (1983), pp. 555-564
[39]
MG Sumi, A Mathai, C Sarada, VV Radhakrishnan.
Rapid diagnosis of tuberculous meningitis by a dot immunobinding assay to detect mycobacterial antigen in cerebrospinal fluid specimens.
J Clin Microbiol, 37 (1999), pp. 3925-3927
[40]
AA Wadee, L Boting, SG Reddy.
Antigen capture assay for detection of a 43-kilodalton Mycobacterium tuberculosis antigen.
J Clin Microbiol, 28 (1990), pp. 2786-2791
[41]
TA Tessema, G Bjune, B Hamasur, S Svenson, H Syre, B Bjorvatn.
Circulating antibodies to lipoarabinomannan in relation to sputum microscopy, clinical features and urinary anti-lipoarabinomannan detection in pulmonary tuberculosis.
Scand J Infect Dis, 34 (2002), pp. 97-103
[42]
E Sada, D Aguilar, M Torres, T Herrera.
Detection of lipoarabinomannan as a diagnostic test for tuberculosis.
J Clin Microbiol, 30 (1992), pp. 2415-2418
[43]
LM Pereira, LN Nguyen, LM Ho, S Kuijper, HM Jansen, AHJ Kolk.
Development of antigen detection assay for diagnosis of tuberculosis using sputum samples.
J Clin Microbiol, 38 (2000), pp. 2278-2283
[44]
RH Meloen, WC Puijk, JW Slootstra.
Mimotopes: realization or fan unlikely concept.
J Mol Recog, 13 (2000), pp. 352-359
[45]
B Monzavi-Karbassi, G Cunto-Amesty, P Luo, T Kieber-Emmons.
Peptide mimotopes as surrogate antigens of carbohydrates in vaccine discovery.
Trends Biotech, 20 (2002), pp. 207-214
[46]
JH Youn, HJ Myung, A Liav, D Chatterjee, PJ Brennan, IH Choi, et al.
Production and characterization of peptide mimotopes of phenolic glycolipid-I of Mycobacterium leprae.
FEMS Immunol Med Microbiol, 41 (2004), pp. 51-57
[47]
G Gevorkian, E Segura, G Acero, JP Palma, C Espitia, K Manoutcharian, et al.
Peptide mimotopes of Mycobacterium tuberculosis carbohydrate immunodeterminants.
Biochem J, 387 (2005), pp. 411-417
[48]
E Schölvinck, KA Wilkinson, AO Whelan, AR Martineau, M Levin, RJ Wilkinson.
Gamma interferon-based immunodiagnosis of tuberculosis: comparison between whole-blood and enzyme-linked immunospot methods.
J Clin Microbiol, 42 (2004), pp. 829-931
[49]
P Ravn, ME Munk, AB Andersen, B Lundgren, JD Lundgren, LN Nielsen, et al.
Prospective evaluation of a whole-blood test using Mycobacterium tuberculosis-specific antigens ESAT-6 and CFP-10 for diagnosis of active tuberculosis.
Clin Diag Lab Immunol, 12 (2005), pp. 491-496
[50]
PC Hill, D Jackson-Sillah, A Fox, KLMC Franken, MD Lugos, DJ Jeffries, et al.
ESAT-6/CFP-10 fusion protein and peptides for optimal diagnosis of Mycobacterium tuberculosis infection by ex vivo enzyme-linked immunospot assay in the Gambia.
J Clin Microbiol, 43 (2005), pp. 2070-2074
[51]
D Goletti, D Vicenti, S Carrara, O Butera, F Bizzoni, G Bernardini, et al.
Selected RD1 peptides for active tuberculosis diagnosis: comparison of a gamma interferon whole-blood enzyme-linked immunosorbent assay and enzyme-linked immunospot assay.
Clin Diag Lab Immunol, 12 (2005), pp. 1311-1316
[52]
ST Cole, R Brosch, J Parkhill, T Garnier, C Churcher, D Harris, et al.
Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence.
Nature, 393 (1998), pp. 537-544
[53]
M Kato-Maeda, JT Rhee, TR Gingeras, H Salamon, J Drenkow, N Smittipat, et al.
Comparing genomes within the species Mycobacterium tuberculosis.
Gen Res, 11 (2001), pp. 547-554
[54]
R Brosch, SV Gordon, M Marmiesse, P Brodin, C Buchrieser, K Eiglmeier, et al.
A new evolutionary scenario for the Mycobacterium tuberculosis complex.
Proc Natl Acad Sci U S A, 99 (2002), pp. 3684-3689
[55]
AG Tsolaki, AE Hirsh, K DeRiemer, JA Enciso, MZ Wong, M Hannan, et al.
Functional and evolutionary genomics of Mycobacterium tuberculosis: insights from genomic deletions in 100 strains.
Proc Natl Acad Sci U S A, 101 (2004), pp. 4865-4870
[56]
RC Huard, LC Oliveira-Lazzarini, WR Butler, D van Soolingen, JL Ho.
PCR-based method to differentiate the subspecies of the Micobacterium tuberculosis complex on the basis of genomics deletions.
J Clin Microbiol, 41 (2003), pp. 1637-1650
[57]
TM Shinnick.
The 65-kilodalton antigen of Mycobacterium tuberculosis.
J Bacteriol, 169 (1987), pp. 1080-1088
[58]
A Telenti, F Marchesi, M Balz, F Bally, E Bottger, T Bodmer.
Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis.
J Clin Microbiol, 31 (1993), pp. 175-178
[59]
DA Wong, PCW Yip, DTL Cheung, KM Kam.
Simple and rational approach to the identification of Mycobacterium tuberculosis, Mycobacterium avium complex species, and other commonly isolated mycobacteria.
J Clin Microbiol, 39 (2001), pp. 3768-3771
[60]
K Hong, K Sun-Hyun, S Tae-Sun, K Mi-na, B Gill-Han, P YoungGil, et al.
PCR restriction fragment length polymorphism analysis (PRA)-algorithm targeting 644 pb heat shock protein 65 (hsp65) gene for differentiation of Mycobacterium spp.
J Microbiol Meth, 62 (2005), pp. 199-209
[61]
DM Collins, GW Lisle.
DNA restriction endonuclease analysis of M. tuberculosis and M. bovis-BCG.
J Gen Microbiol, 130 (1984), pp. 1019-1021
[62]
JDA van Embden, MD Cave, JT Crawford, JW Dale, KD Eisenach, B Guicquel, et al.
Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardised methodology.
J Clin Microbiol, 31 (1993), pp. 406-409
[63]
D van Soolingen, PW Hermans, PE De Hass, JD van Embden.
Insertion element IS1081-associated restriction fragment length polymorphism in Mycobacterium tuberculosis complex species: a reliable tool for recognizing Mycobacterium bovis-BCG.
J Clin Microbiol, 30 (1992), pp. 1772-1777
[64]
PMA Groenen, AE Bunschoten, D van Soolingen, JDA van Embden.
Nature of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis: application for strain differentiation by a novel method.
Mol Microbiol, 105 (1993), pp. 1057-1065
[65]
J Kamerbeek, L Schouls, A Kolk, M van Agterveld, D van Soolingen, S Kuijper, et al.
Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology.
J Clin Microbiol, 35 (1997), pp. 907-914
[66]
AGM van der Zanden, K Kremer, LM Schouls, K Caimi, A Cataldi, A Hulleman, et al.
Improvement of differentiation and interpretability of spoligotyping for Mycobacterium tuberculosis complex isolates by introduction of new spacer oligonucleotides.
J Clin Microbiol, 40 (2002), pp. 4628-4639
[67]
E Mazars, S Lesjean, AL Banuls, M Gilbert, V Vincent, B Gicquel, et al.
High-resolution minisatellite based typing as a portable approach to global analysis of Mycobacterium tuberculosis molecular epidemiology.
Proc Natl Acad Sci U S A, 98 (2001), pp. 1901-1906
[68]
JC Palomino.
Newer diagnostics for tuberculosis and multi-drug resistant tuberculosis.
Curr Opin Pulm Med, 12 (2006), pp. 172-178
[69]
Escobar Gutiérrez A, Editor. Manual de procedimientos de laboratorio no. 18 INDRE/SAGAR: Tuberculosis. México D. F. Secretaria de Salud, Secretaria de Agricultura, Ganadería y Desarrollo Rural, Organización Panamericana de la Salud. 1996.

Dr Palma-Nicolás was supported by a grant from the National Science and Technology Council (CONACYT) for his doctorate studies in Mexico (2002–2006). The Multidisciplinary Academic Unit (UAM) Reynosa Aztlán of the Universidad Autónoma of Tamaulipas also provided economic support for the preparation of the present manuscript.

Copyright © 2007. Sociedad Española de Neumología y Cirugía Torácica (SEPAR)
Archivos de Bronconeumología
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?