Journal Information
Vol. 35. Issue 6.
Pages 280-286 (June 1999)
Share
Share
Download PDF
More article options
Vol. 35. Issue 6.
Pages 280-286 (June 1999)
Full text access
Función diafragmática durante el ejercicio en pacientes con EPOC severa
Diaphragm function during exercise in patients with severe chronic obstructive pulmonary disease
Visits
3839
J. Gea
Corresponding author
jgea@imim.es

Correspondencia: Servicio de Neumología. Hospital del Mar. IMIM. Avda. Doctor Aiguader, 80. 08003 Barcelona.
, J. Sauleda, M. Orozco-Levi, M.C. Aguar, E. Barreiro, J.M. Broquetas
Servicio de Neumología. Unitat de Recerca Respiratòria i Ambiental. Hospital del Mar. IMIM. Universitat Autònoma de Barcelona. Universitat Pompeu Fabra. Barcelona
This item has received
Article information
Abstract
Bibliography
Download PDF
Statistics

Durante el ejercicio aumentan las demandas ventilatorias. En pacientes con enfermedad pulmonar obstructiva crónica, los musculos respiratorios afrontan este incremento de actividad en condiciones especialmente desfavorables. El objetivo de este trabajo fue evaluar los cambios que el ejercicio provoca en la función de los MR de estos enfermos.

Métodos

Se incluyeron 12 pacientes con enfermedad pulmonar obstructiva crónica grave (FEV1<50% ref., 63±7 años). En todos ellos se monitorizaron el patron y las presio- nes respiratorias (esofágica o Pes, y transdiafragmática o Pdi) y SaO2 durante la realización de un ejercicio submáximo (Ejsbmáx, 60% de la carga maxima tolerada). Las presiones máximas (respectivamente, Pesmáx y Pdimáx) se obtuvieron por maniobra de sniff. El estudio se realizó respirando aire am- biente y con suplemento de O2 para alcanzar una SaO2 del 99%. En un subgrupo de 5 pacientes se determinó adenitis el cambio en el nivel de FRC por pletismografía inductiva.

Resultados

Durante el Ejsbmáx respirando aire ambiente, la SaO2 disminuyo (95,0±2,1 a 92,3±4,0%; p<0,01), aumentando el Vt (717±199 a 990±297ml; p<0,01) y la frecuencia respiratoria (FR: 17±6 a 28±9; p<0,01). La Pes y Pdi a volumen corriente aumentaron (-12,4±4,8 a -27,0±10,1 y 16,6±6,1 a 30,4±12,4cmH2O, respectivamente; p<0,01 en ambas), sin variaciones significativas en la fuerza maxima de los musculos respiratorios (Pesmáx: -61,4±16,5 frente a -65,9±15,2cmH2O; Pdimáx: 89,7±26,1 frente a 81,7±35,7cmH2O). Como resultado global, empeoraron el cociente Pdi/Pdimáx (0,21±0,12 a 0,42±0,20; p<0,01) y el índice tensión-tiempo del diafragma (TTdi: 0,07±0,04 a 0,15±0,06; p<0,01). La PEEP intrínseca (PEEPi) tuvo un aumento estimado de 2,7±2,1 a 9,4±5,8cmH2O (p<0,001), al igual que la FRC (A 357±274ml). Durante el Ejsbmáx con o2 suplementario, la SaO2 no disminuyo. Sin embargo, y al igual que con aire ambiente, los Vt, FR, Pdi, Pdi/Pdimáx, TTdi, PEEPi y FRC aumentaron, sin modificarse Ti/TTOT ni presiones respiratorias maximas.

Conclusiones

Los cambios que el Ejsbmáx induce en la función de los músculos respiratorios parecen depender funda- mentalmente del empeoramiento en la mecánica del sistema.

Palabras clave:
Ejercicio
Diafragma
Enfermedad pulmonar obstructiva crónica
Key words:
Exercise
Diaphragm
COPD

Ventilatory requirements increase during exercise. The respiratory muscles of patients with chronic obstructive pulmonary disease (COPD) are at a particular disadvantage when dealing with such increased demand. The objective of this study was to evaluate the changes in respiratory muscles brought on by exercise in such patients.

Methods

Twelve patients with severe CFOPD (FEV1<50% ref., 63±7 years) were enrolled. Breathing patterns and esophageal (Pes and transdiaphragmatic (Pdi) pressures and SaO2 were measured during submaximal exercise /Ecbsmáx\, 60% of the maximum tolerated load). A sniff maneuver was performed with the patients breathing ambien air with added oxygen to achieve 99% SaO2. We also measured level of FRC by inductive plethysmograph in a subroup of five patients.

Results

During Exsbmáx, SaO2 decreased (from 95.0±2.1 to 92.3±4.0%; p<0.01); Vt increased (717±199 to 990±297 cc, p<0.01), as did respiratory rate (RR, 17±6 a 28±9; p<0.01). Pes and Pdi were greater at Vt, changing from -12.4±4.8 to -27.0±10.1 and 16.6±6.1 to 30.4±12.4cmH2O, respectively (p<0,01 in both cases), whereas no significant changes were observed for maximal effort (Pesmax, -61,4±16.5 cersus -65.9±15.2cmH2O; Pdimax 89.7±26.1 versus 81.7±35.7cmH2O). Used as a global measure, Pdi/Pdimáx worsened (0.21±0.12 a 0.42±0.20; p<0.01), as dud the diaphragm tension-time (TTdi; 0.07±0.04 to 0.15±0.06, p<0.01). Intrinsic positive end-expiratory pressure (PEEPi) increased an estimated 2.7±2.1 to 9.4±5.8cmH2O (p<0.001), while FRC (A 357±274ml). Durante el EXsbmax with oxygen supplementation, SaO2 did not decrease. However supplementation, though Ti/TTOT and maximal pressures remained unchanged.

Conclusions

Respiratory muscle function changes induced by Exsbmáx seem to relate mainly to a worsening of system mechanics.

Full text is only aviable in PDF
Bibliografía
[1.]
K.J. Killian, P. Leblanc, D.H. Martin, E. Summers, N.L. Jones, E.J.M. Campbell.
Exercise capacity and ventilatory, circulatory, and symptom limitation in patients with chronic airflow limitation.
Am Rev Respir Dis, 146 (1992), pp. 935-940
[2.]
N.L. Jones, G. Jones, R.H.T. Edwards.
Exercise tolerance in chronic airways obstruction.
Am Rev Respir Dis, 103 (1978), pp. 477
[3.]
M. Montes de Oca, J. Rassulo, B. Celli.
Respiratory muscles and cardiopulmonary function during exercise in very severe COPD.
Am J Respir Crit Care Med, 154 (1996), pp. 1.284-1.289
[4.]
M. Montes de Oca, B. Celli.
Prueba de esfuerzo cardiopulmonar en pacientes con enfermedad pulmonar obstructiva crónica.
Arch Bronconeumol, 33 (1997), pp. 582-587
[5.]
J. Loke, D.A. Mahler, S.F.P. Man, H.P. Wiedemann, R.A. Matthay.
Exercise impairment in chronic obstructive pulmonary disease.
Clin Chest Med, 5 (1984), pp. 121-143
[6.]
D.F. Rochester, N.M. Braun.
Determinants of maximal inspiratory pressures in chronic obstructive pulmonary disease.
Am Rev Respir Dis, 132 (1985), pp. 42-47
[7.]
J.T. Sharp.
The respiratory muscles in chronic obstructive pulmonary disease.
Am Rev Respir Dis, 134 (1986), pp. 1.089-1.091
[8.]
J. Mead.
Functional significance of apposition of diaphragm to rib cage.
Am Rev Respir Dis, 119 (1979), pp. 31-32
[9.]
A. De Troyer, N.B. Pride.
The chest wall and respiratory muscles in chronic obstructive pulmonary disease.
The Thorax, 2.ª, pp. 1.975-2.006
[10.]
P.D. Wagner, D.R. Dantzker, R. Dueck.
Ventilation-perfusion inequality in chronic obstructive pulmonary disease.
J Clin Invest, 59 (1977), pp. 203-216
[11.]
O. Bauerle, C.A. Chrusch, M. Younes.
Mechanisms by which COPD affects exercise tolerance.
Am J Crit Care Med, 15 (1998), pp. 57-68
[12.]
M. Montes de Oca, J. Rassulo, B. Celli.
Respiratory muscles and cardiopulmonary function during exercise in very severe COPD.
Am J Respir Crit Care Med, 154 (1996), pp. 1.284-1.289
[13.]
J. Roca, J. Sanchís, A. Agustí-Vidal, F. Segarra, D. Navajas, R. Rodríguez-Roisin, et al.
Spirometric reference values for a Mediterranean population.
Bull Eur Physiopathol Respir, 22 (1986), pp. 217-224
[14.]
J. Roca, F. Burgos, J.A. Barberd, et al.
Prediction equations for plethysmographic lung volumes.
Respir Med, 92 (1998), pp. 454-460
[15.]
J. Roca, R. Rodríguez-Roisín, E. Cobo, F. Burgos, J. Pérez, J.L. Clausen.
Single-breath carbon monoxide diuffusing capacity (DLco) prediction equations for a Mediterranean population.
Am Rev Respir Dis, 141 (1990), pp. 1.026-1.032
[16.]
D. Laporta, A. Grassino.
Assessment of transdiaphragmatic pressure in humans.
J Appl Physiol, 58 (1985), pp. 1.469-1.476
[17.]
X. Aran, J. Gea, R. Guiu, M.C. Aguar, J. Sauleda, J.M. Broquetas.
Comparación de tres maniobras diferentes para la obtención de la presión transdiafragmática maxima.
Arch Bronconeumol, 28 (1992), pp. 112-115
[18.]
S.H. Wilson, N.T. Cooke, R.H.T. Edwards.
Predicted normal values for maximal inspiratory pressure in Caucasian adults and children.
Thorax, 39 (1984), pp. 535-538
[19.]
F. Bellemare, A. Grassino.
Effect of pressure and timing of contraction on human diaphragm fatigue.
J Appl Physiol, 68 (1982), pp. 2.296-2.304
[20.]
M.A. Cohn, A.S.V. Rao, M. Broudy, S. Birch, H. Warson, N. Atkins, et al.
The respiratory inductive plethysmograph: a new non-invasive monitor of respiration.
Bull Eur Physiopathol Respir, 18 (1982), pp. 643-658
[21.]
J.M. Marin, S.N.A. Hussain, W.J. Gibbons, M. Polverino, R.D. Levy, M.G. Cosio.
Relationship of resting lung mechanics and exercise pattern of breathing in patients with chronic obstructive lung disease.
Chest, 104 (1993), pp. 705-711
[22.]
W.A. Potter, S. Olafsson, R.E. Hyatt.
Ventilatory mechanics and expiratory flow limitation during exercise in patients with obstructive lung disease.
J Clin Invest, 50 (1971), pp. 910-919
[23.]
M. Younes, G. Kivinen.
Respiratory mechanics and breathing pattern during and following maximal exercise.
J Appl Physiol, 57 (1984), pp. 1.773-1.782
[24.]
D.G. Stubbing, L.D. Pengelly, J.L.C. Morse.
Pulmonary mechanics during exercise in subjects with chronic airflow obstruction.
J Appl Physiol, 49 (1980), pp. 511-515
[25.]
D.S. Dodd, T. Brancatisano, L.A. Engel.
Chest wall mechanics during exercise in patients with severe obstructive lung disease.
Am Rev Respir Dis, 129 (1984), pp. 33-38
[26.]
D.E. O’Donnell, R. Sanii, M. Younes.
Improvement in exercise endurance in patients with chronic airway limitation using continuous positive airway pressure.
Am Rev Respir Dis, 138 (1988), pp. 1.510-1.514
[27.]
K. Wasserman, D.Y. Sue, R. Casaburi, R.B. Moricca.
Selection criteria for exercise training in pulmonary rehabilitation.
Eur Respir J, 7 (1989), pp. 604-610
[28.]
R. Gosselink, Th Troosters, M. Decramer.
Peripheral muscle weakness contributes to exercise limitation in COPD.
Am J Respir Crit Care Med, 153 (1996), pp. 976-980
[29.]
J. Sauleda, F. García-Palmer, R.J. Wiesner, S. Tarraga, I. Harting, P. Tomas, et al.
Cytochrome oxidase activity and mitochondrial gene expression in skeletal muscle of patients with COPD.
Am J Respir Crit Care Med, 157 (1998), pp. 1.413-1.417
[30.]
T. Similowsky, S. Yan, A. Gauthier, P.T. Macklem, F. Bellemare.
Contractile properties of the human diaphragm during chronic hyperinflation.
N Engl J Med, 325 (1991), pp. 917-923
[31.]
S. Levine, L. Kaiser, J. Leferovich, B. Tikunov.
Cellular adaptations in the diaphragm in chronic obstructive pulmonary disease.
N Engl J Med, 337 (1997), pp. 1.799-1.806
[32.]
M. Orozco-Levi, J. Gea, J. Lloreta, M. Félez, J. Minguella, S. Serrano, et al.
Subcellular adaptation of the human diaphragm in chronic obstructive pulmonary disease.
Eur Respir J, 13 (1999), pp. 371-378
[33.]
M. Orozco-Levi, J. Gea, M.C. Aguar, M. Félez, M.A. Jiménez-Fuentes, J. Broquetas.
Changes in the capillary content in the diaphragm of COPD patients: a sort of muscle remodelling?.
Am J Respir Crit Care Med, 153 (1996), pp. 298
[34.]
F.J. Martínez, J.I. Couser, B.R. Celli.
Factors influencing ventilatory muscle recruitment in patients with chronic airway obstruction.
Am Rev Respir Dis, 142 (1990), pp. 276-282
[35.]
P.T.P. Bye, S.A. Esau, K.R. Walley, P.T. Macklem, R.L. Pardy.
Ventilatory muscles during exercise in air and oxygen in normal men.
J Appl Physiol, 56 (1984), pp. 464-471
[36.]
M. Orozco-Levi.
Cambios adaptativos en la estructura subcelular del diafragma humano. Asociaciones con la EPOC.
[tesis doctoral], Universidad Autonoma de Barcelona, (1995),
[37.]
M.C. Aguar.
Estructura y función de los músculos respiratorios en la EPOC: desarrollo de un modelo de biopsia ambulatoria.
Universidad Autonoma de Barcelona, (1995),
[38.]
R.W. Light, H.M. Mintz, G.S. Linden, S.E. Brown.
Hemodynamic of patients with severe chronic obstructive pulmonary disease during progressive upright exercise.
Am Rev Respir Dis, 130 (1984), pp. 391-395
Copyright © 1999. Sociedad Española de Neumología y Cirugía Torácica
Archivos de Bronconeumología
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?