Journal Information
Vol. 42. Issue 3.
Pages 125-129 (March 2006)
Share
Share
Download PDF
More article options
Vol. 42. Issue 3.
Pages 125-129 (March 2006)
Original Articles
Full text access
Effects of Nasal Positive Airway Pressure Treatment on Oxidative Stress in Patients With Sleep Apnea-Hypopnea Syndrome
Visits
4013
C. Hernándeza,b,
Corresponding author
chernandezg@teleline.es

Correspondence: Dra. C. Hernández. Servicio de Neumología. Hospital Universitario de Canarias. La Cuesta, s/n. 38320 La Laguna. Santa Cruz de Tenerife. España
, J. Abreua,b, P. Abreuc, R. Colinod, A. Jiménezb
a Servicio de Neumología, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
b Unidad Mixta de Investigación, Hospital Universitario de Canarias, Universidad de la Laguna, La Laguna, Santa Cruz de Tenerife, Spain
c Departamento de Fisiología, Facultad de Medicina, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
d Laboratorio Central, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
This item has received
Article information
Objective

To analyze whether nasal continuous positive airway pressure (CPAP) reduces oxidative stress in patients with sleep apnea-hypopnea syndrome (SAHS).

Patients and methods

Thirty-six patients with SAHS requiring nasal CPAP treatment and 10 controls in whom SAHS was ruled out were enrolled. Oxidative stress was evaluated by measuring plasma malondialdehyde (MDA) concentrations to assess lipid peroxidation at the beginning of the study and then again after a mean (SD) of 2.9 (0.6) months of nasal CPAP. Plasma MDA concentrations were determined by measuring thiobarbituric acid reactive substances. We controlled for the following factors known to influence oxidative stress: age, sex, use of vitamin supplements, smoking habit, body mass index (kg/m2), ischemic cardiopathy, hypertension, diabetes, and hypercholesterolemia.

Results

The mean age of patients with SAHS was 51.4 (9.9) years and the mean body mass index was 32.9 (5.3) kg/m2. Nasal CPAP was titrated to a mean pressure of 8.9 (3.4) cm H2O. The mean score on the Epworth sleepiness scale was 10.2 (4.3) before treatment and 4.2 (2.8) after treatment (P <.001). The apnea-hypopnea index decreased from 43.7 (22.6) before treatment to 4 (3.5) after treatment (P <.001). Mean MDA concentrations in patients with SAHS were 2.0 (1.1) μmol/mL before treatment and decreased significantly to 1.6 (0.07) μmol/mL after treatment, whereas MDA concentrations remained unchanged in control subjects.

Conclusions

Nasal CPAP treatment significantly reduced oxidative stress in patients with SAHS in our study.

Key words:
Oxidative stress
Sleep apnea-hypopnea syndrome
Nasal positive airway pressure
Objetivo

Analizar si el tratamiento con presión positiva continua de la vía aérea nasal (CPAPn) reduce el estrés oxidativo (EO) en pacientes con síndrome de apneas-hipopneas durante el sueño (SAHS).

Pacientes y métodos

Se incluyó en el estudio a 36 pacientes con SAHS que requirieron tratamiento con CPAPn y a 10 controles en quienes se excluyó dicho síndrome. Se realizó una primera determinación del EO mediante las concentraciones de malondialdehído (MDA) en sangre para conocer la peroxidación lipídica, y una segunda tras una media ± des-viación estándar de 2,9 ± 0,6 meses de seguimiento con CPAPn. Las concentraciones plasmáticas de MDA se midieron como sustancia reactiva al ácido tiobarbitúrico. Se controló para los siguientes factores, que se sabe que influyen en el EO: edad, sexo, suplementos vitamínicos, consumo de ta-baco, índice de masa corporal (kg/m2), cardiopatía isquémi-ca, hipertensión, diabetes e hipercolesterolemia.

Resultados

La edad media de los pacientes con SAHS fue de 51,4 ± 9,9 años y el índice de masa corporal, de 32,9 ± 5.3 kg/m2. La CPAPn se reguló a una presión media de 8,9 ± 3.4 cmH2O. La puntuación en la escala de Epworth antes del tratamiento fue de 10,2 ± 4,3, frente a 4,1 ± 2,8 después del tratamiento (p < 0,001). El índice de apneas-hipopneas/h descendió de 43,7 ± 22,6 antes del tratamiento a 4 ± 3,5 después de la CPAPn (p < 0,001). En los pacientes con SAHS las concentraciones de MDA antes del tratamiento con CPAPn fueron de 2,0 ±1,1 μM y descendieron significativa -mente a 1,6 ± 0,7 μM después del tratamiento, mientras que no se modificaron en los sujetos controles.

Conclusiones

El tratamiento con CPAPn reduce de forma significativa el EO en los pacientes SAHS de nuestro estudio.

Palabras clave:
Estrés oxidativo
Síndrome de apneas-hipopneas durante el sueño (SAHS)
Tratamiento con CPAPn
Full text is only available in PDF
REFERENCES
[1]
N Kaul, N Siveski-Iliskovic, M Hill, J Slezak, PK Singal.
Free radicals and the heart.
J Pharmacol Toxicol Methods, 30 (1993), pp. 55-67
[2]
JA Knight, DA Searles, FC Clayton.
The effect of desferrioxamine on stored erythrocytes: lipid peroxidation, deformability, and morphology.
Ann Clin Lab Sci, 26 (1996), pp. 283-290
[3]
D Steinberg, SS Parthasarathy, TE Carew, JC Khoo, JL Witztum.
Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity.
N Engl J Med, 32 (1989), pp. 915-924
[4]
JT Carlson, JA Hedner, H Ejnell, LE Peterson.
High prevalence of hypertension in sleep apnea patients independent of obesity.
Am J Respir Crit Care Med, 150 (1994), pp. 72-77
[5]
A Barceló, F Barbé.
Estrés oxidativo y síndrome de apneahipopnea del sueño.
Arch Bronconeumol, 41 (2005), pp. 393-399
[6]
K Christou, AN Moulas, C Pastaka, KI Gorgoulianis.
Antioxidant capacity in obstructive sleep apnea patients.
Sleep Med, 4 (2003), pp. 225-228
[7]
L Ozturk, B Mansour, M Yuksel, AS Yalcin, F Celikoglu, N Gokhan.
Lipid peroxidation and osmotic fragility of red blood cells in sleep-apnea patients.
Clin Chim Acta, 332 (2003), pp. 83-88
[8]
G Müns, I Rubinstein, P Singer.
Phagocytosis and oxidative burst of granulocytes in the upper respiratory tract in chronic and acute inflammation.
J Otolaryngol, 24 (1995), pp. 105-110
[9]
M Kato, P Roberts-Thomson, BG Phillips, WG Haynes, M Winnick, V Accurso.
Impairment of endothelium-dependent vasodilation of resistance vessels in patients with obstructive sleep apnea.
Circulation, 102 (2000), pp. 2607-2610
[10]
O Milleron, R Pilliere, A Foucher, F de Roquefeuil, P Aegerter, G Jondeau, et al.
Benefits of obstructive sleep apnoea treatment in coronary artery disease: a long-term follow-up study.
Eur Heart J, 25 (2004), pp. 709-711
[11]
JM Montserrat, J Amilibia, F Barbé, F Capote, J Durán, NG Mangado, et al.
Tratamiento del síndrome de apneahipopnea durante el sueño.
Arch Bronconeumol, 34 (1998), pp. 171-223
[12]
E Chiner, J Arriero, J Signes-Costa, J Marco, I Fuentes.
Validación de la versión española del test de somnolencia Epworth en pacientes con síndrome de apnea de sueño.
Arch Bronconeumol, 35 (1999), pp. 422-427
[13]
Grupo de trabajo de la Sociedad Española de Patología Respiratoria (SEPAR) para la práctica de la espirometría clínica.
Normativa para la espirometría forzada, Doyma, (1985),
[14]
A Rechtshaffen, A Kales.
A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. Bethesda: National Institute of Neurological Disease and Blindness, US Government Printing Office, (1986),
[15]
American Sleep Disorders Association.
EEG arousals: scoring rules and examples.
Sleep, 15 (1992), pp. 173-184
[16]
K Kikugawa, T Kojima, S Yamaki, H Kosugi.
Interpretation of the thiobarbituric acid reactivity of rat liver and brain homogenates in the presence of ferric ion and ethylenediaminetetraacetic acid.
Anal Biochem, 202 (1992), pp. 249-255
[17]
SC Veasey, CW Davis, P Fenik, G Zhan, YJ Hsu, D Pratico, et al.
Long-term intermittent hypoxia in mice: protracted hypersomnolence with oxidative injury to sleep-wake brain regions.
Sleep, 27 (2004), pp. 194-201
[18]
L Ramanathan, S Gulyani, R Nienhuis, JM Siegel.
Sleep deprivation decreases superoxide dismutase activity in hippocampus and brainstem.
Neuroreport, 13 (2002), pp. 1387-1390
[19]
A Gopalakrishnan, LL Ji, C Cirelli.
Sleep deprivation and cellular responses to oxidative stress.
Sleep, 27 (2004), pp. 27-35
[20]
GE Carpagnano, SA Kharitonov, O Resta, MP Foschino-Barbaro, E Gramiccioni, PJ Barnes.
8-Isoprostane, a marker of oxidative stress, is increased in exhaled breath condensate of patients with obstructive sleep apnea after night and is reduced by continuous positive airway pressure therapy.
Chest, 124 (2003), pp. 1386-1392
[21]
O Marrone, G Insalaco, MR Bonsignore, S Romano, A Salvaggio, G Bonsignore.
Sleep structure correlates of continuous positive airway pressure variations during application of an autotitrating continuous positive airway pressure machine in patients with obstructive sleep apnea syndrome.
Chest, 121 (2002), pp. 759-767
[22]
J Heitmann, K Ehlenz, T Penzel, HF Becker, L Grote, KH Voigt, et al.
Sympathetic activity is reduced by nCPAP in hypertensive obstructive sleep apnoea patients.
Eur Respir J, 23 (2004), pp. 255-262
[23]
GE Carpagnano, SA Kharitonov, O Resta, MP Foschino-Barbaro, E Gramiccioni, PJ Barnes.
Increased 8-isoprostane and interleukin-6 in breath condensate of obstructive sleep apnea patients.
Chest, 122 (2002), pp. 1162-1167
[24]
I Suciu, V Negrean, D Sampelean.
The oxidative stress in the development of diabetes chronic complications in the elderly.
Rom J Intern Med, 42 (2004), pp. 395-406
[25]
H van der Vaart, DS Postman, W Timens, NH Ten Hacken.
Acute effects of cigarette smoke on inflammation and oxidative stress: a review.
Thorax, 59 (2004), pp. 713-721
[26]
RW Powers, AK Majors, DL Lykins, CJ Sims, KY Lain, JM Roberts.
Plasma homocysteine and malondialdehyde are correlated in an age-and gender-specific manner.
Metabolism, 51 (2002), pp. 1433-1438
[27]
P Santus, A Sola, P Carlucci, F Fumagalli, A Di Gennaro, M Mondoni, et al.
Lipid peroxidation and 5–lipoxygenase activity in chronic obstructive pulmonary disease.
Am J Respir Crit Care Med, 171 (2005), pp. 838-843
[28]
A Barceló, C Miralles, F Barbé, M Vila, S Pons, AGN Agustí.
Abnormal lipid peroxidation in patients with sleep apnoea.
Eur Respir J, 16 (2000), pp. 644-647
[29]
SO Wali, AS Bahammam, H Massaeli, GN Pierce, N Lliskovic, PK Singal, et al.
Susceptibility of LDL to oxidative stress in obstructive sleep apnea.
Sleep, 21 (1998), pp. 290-296
[30]
L Lavie, A Vishnevsky, P Lavie.
Evidence for lipid peroxidation in obstructive sleep apnea.
Sleep, 27 (2004), pp. 123-128
[31]
R Schulz, S Mahmoudi, K Hattar, U Sibelius, O Horst, K Mayer, et al.
Enhanced release of superoxide from polymorphonuclear neutrophils in obstructive sleep apnea. Impact of continuous positive airway pressure therapy.
Am J Respir Crit Care Med, 162 (2000), pp. 556-570
[32]
J He, MH Kryger, FJ Zorick, W Conway, T Roth.
Mortality and apnea index in obstructive sleep apnea (experience in 385 male patients).
Chest, 94 (1988), pp. 9-14
Copyright © 2006. Sociedad Española de Neumología y Cirugía Torácica (SEPAR)
Archivos de Bronconeumología
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?