Journal Information
Vol. 41. Issue 11.
Pages 612-617 (November 2005)
Share
Share
Download PDF
More article options
Vol. 41. Issue 11.
Pages 612-617 (November 2005)
Original Articles
Full text access
Changes in the Acid-Base Equilibrium of Pleural Fluid During the First 2 Hours After Thoracentesis
Visits
5624
M. Haro-Estarriola,
Corresponding author
mip.mharo@htrueta.scs.es

Correspondence: Dr. M. Haro-Estarriol. Sección de Neumología. Planta 4.a B. Hospital Universitario de Girona Doctor Josep Trueta. Avda. de Francia, s/n. 17007 Girona. España
, X. Baldó-Padrób, M. Lora-Díeza, M. Rubio-Garayb, M. Rubio-Godaya, F. Sebastián-Quetglásb
a Sección de Neumología, Hospital Universitario de Girona Doctor Josep Trueta, Girona, Spain
b Servicio de Cirugía Torácica, Hospital Universitario de Girona Doctor Josep Trueta, Girona, Spain
This item has received
Article information
Objective

The aim of this study was to assess changes in the acid-base equilibrium of pleural fluid during the first 2 hours after thoracentesis and to determine whether, as with arterial blood, it is important to keep the fluid on ice.

Patients and methods

A prospective, descriptive, comparative study was performed in 53 consecutive patients with pleural effusion. Thoracentesis was performed and pleural fluid was collected in 5 heparinized syringes to determine the pH, PO2, and PCO2 at baseline and at 30, 60, 90, and 120 minutes. In the first 26 patients, pleural fluid was collected in a further 4 syringes that were kept on ice prior to performing the same measurements at 30, 60, 90, and 120 minutes.

Results

The patients had a mean (SD) age of 70 (14) years, 66% were smokers, 72% were men, 63% had right-sided pleural effusion, 85% had unilateral effusion, and 15% had massive effusion. In 10 patients the effusion was a transudate, in 35 it was lymphocytic, and in 8 it was neutrophilic. The etiology was benign in 34 cases and neoplastic in 19 cases. The baseline pH was 7.35 (0.1) and baseline values of PO2 and PCO2 were 57.8 (20) mm Hg and 53.7 (15) mm Hg, respectively. No significant changes were observed in the first 2 hours for either pH or PCO2, whereas PO2 did undergo a significant change over this period. The difference between the baseline value and the value obtained at 120 minutes was 0.005 (0.02) for pH, 12.5 (19) mm Hg for PO2, and 0.8 (3) mm Hg for PCO2, with correlation coefficients of 0.97, 0.49, and 0.98, respectively. Comparison of values by simple regression analysis did not reveal a significant difference in the changes in pH, PO2, or PCO2 associated with keeping samples on ice. Multivariate analysis revealed that neoplastic effusion and a higher red blood cell count in pleural fluid had a significant influence on pH changes.

Conclusions

The pH and PCO2 of pleural fluid did not change significantly during the first 2 hours following thoracentesis, whereas PO2 did undergo a significant change. Keeping samples on ice during this period is unnecessary. Only a higher red blood cell count in pleural fluid and neoplastic effusion had a limited effect on changes in the pH of samples from our patients during the first 2 hours following thoracentesis.

Key Words:
Pleural fluid
pH
PO2
PCO2
Effect of time
Objetivo

Valorar los cambios en el equilibrio ácido-base del líquido pleural durante las primeras 2 h de la toracocentesis y la importancia de su conservación en hielo como ocu-rre en la sangre arterial.

Pacientes y métodos

Estudio prospectivo, descriptivo y comparativo de 53 pacientes consecutivos con un derrame pleural. Se realizó toracocentesis con extracción del líquido pleural en 5 jeringas heparinizadas para determinar el pH, presión arterial de oxígeno (PO2) y de anhídrido carbónico (PCO2) basales, a los 30, 60, 90 y 120 min. En los primeros 26 pacientes se obtuvieron 4 jeringas que se conservaron en hielo y se realizaron las mismas determinaciones en el tiempo.

Resultados

LOS pacientes tenían una edad media (± des-viación estándar) de 70 ± 14 años, el 66% eran fumadores, el 72% varones, un 63% tenía un derrame derecho, un 85% unilateral y el 15% masivo. En 10 casos era un trasudado, en 35 exudado linfocitario y en 8 neutrofílico. La etiología fue benigna en 34 casos y neoplásica en 19. El valor basal del pH fue de 7,35 ± 0,1, y los de PO2y PCO2 de 57,8 ± 20 y 53,7 ± 15 mmHg, respectivamente, y no presentaron cambios significativos durante las primeras 2 h, a excepción de la PO2. El pH presentó una diferencia entre su valor basal y a los 120 min de 0,005 ± 0,02, la PO2 de 12,5 ± 19 mmHg y la PCO2 de 0,8 ± 3 mmHg, con unos coeficientes de correlación de 0,97, 0,49 y 0,98, respectivamente. El estudio comparativo y la regresión simple no demostraron una influencia sig-nificativa de la conservación en hielo en los cambios de pH, PO2 o PCO2. Una etiología neoplásica y un mayor número de hematíes influyeron de forma significativa en los cambios de pH en el análisis multivariante.

Conclusiones

El pH y la PCO2 pleurales no presentaron cambios significativos durante las primeras 2 h de la toracocentesis, a diferencia de la PO2. La conservación en hielo no estaría indicada durante este período. Sólo un nümero más elevado de hematíes o una etiología neoplásica tuvieron una influencia limitada en los cambios de los valores del pH de nuestros pacientes en las primeras 2 h.

Palabras clave:
Líquido pleural
pH
PO2
PCO2
Efecto del tiempo
Full text is only available in PDF
REFERENCES
[1]
RW Light.
Pleural effusion.
N Engl J Med, 25 (2002), pp. 1971-1977
[2]
V Villena.
¿De qué nos informa el líquido pleural?.
Arch Bronconeumol, 39 (2003), pp. 193-194
[3]
AC Tarn, R Lapworth.
Biochemical analysis of pleural fluid: what should we measure?.
Ann Clin Biochem, 38 (2001), pp. 311-322
[4]
JT Good, DA Taryle, RM Maulitz, RL Kaplan, SA Sahn.
The diagnostic value of pleural fluid pH.
Chest, 78 (1980), pp. 55-59
[5]
JE Heffner, JN Heffner, LK Brown.
Multilevel and continuous pleural fluid pH likelihood ratios for evaluating malignant pleural effusions.
Chest, 123 (2003), pp. 1887-1894
[6]
RW Light.
Avances en el manejo de derrame pleural paraneumónico.
Arch Bronconeumol, 32 (1996), pp. 319-320
[7]
V Villena, A López, J Echave, C Álvarez, P Martín.
Estudio prospectivo de 1.000 pacientes consecutivos con derrame pleural. Etiología del derrame y características de los pacientes.
Arch Bronconeumol, 38 (2002), pp. 21-26
[8]
V Villena, A López, J Echave, C Álvarez, L Rey, MT Sotelo, et al.
Mesotelioma pleural: experiencia durante 9 años y descripción de 62 casos.
Arch Broncomeumol, 40 (2004), pp. 203-208
[9]
DA Taryle, JT Good, SA Sahn.
Acid generation by pleural fluid: possible role in the determination of pleural fluid pH.
J Lab Clin Med, 93 (1979), pp. 1041-1046
[10]
AK Ayoub, AH Kerkeni.
The pH, pCO2 and pO2 of pleural fluid. Variations and diagnostic value.
Rev Pneumol Clin, 40 (1984), pp. 24350
[11]
D Cheng, M Rodríguez, J Rogers, M Wagster, DL Starnes, RW Light.
Comparison of pleural fluid pH values obtained using blood gas machine, pH meter and indicator strip.
Chest, 114 (1998), pp. 1368-1372
[12]
BD Sarodia, LS Goldstein, DM Laskowski, AC Mehta, AC Arroliga.
Does pleural fluid pH change significantly at room temperature during the first hour following thoracentesis?.
Chest, 11 (2000), pp. 1043-1048
[13]
D Jiménez, G Díaz, E Pérez, E Prieto, RG Yusen.
Modification of pleural fluid pH by local anesthesia.
Chest, 116 (1999), pp. 399-402
[14]
F Gallo, F Pascual, JL Viejo.
Complicaciones de la toracocentesis y de labiopsiapleural con aguja.
Arch Bronconeumol, 29 (1993), pp. 129-135
[15]
LS Goldstein, K McCarthy, AC Mehta, AC Arroliga.
Is direct collection of pleural fluid into a heparinized syringe important for determination of pleural pH? A brief report.
Chest, 112 (1997), pp. 707-708
[16]
AR Hill.
Avoiding air in pleural fluid pH samples.
Chest, 113 (1998), pp. 1729-1730
[17]
RW Light, MI MacGregor, WC Ball, PC Luchsinger.
Diagnostic significance of pleural fluid pH and pCO2.
Chest, 64 (1973), pp. 591-596
[18]
TM Chandler, EH McCoskey, RP Byrd, TM Roy.
Comparison of the use and accuracy of methods for determining pleural fluid pH.
South Med J, 92 (1999), pp. 214-217
[19]
SA Sahn, DA Taryle, JT Good.
Experimental empyema: time course and pathogenesis of pleural fluid acidosis and low pleural fluid glucose.
Am Rev Respir Dis, 120 (1979), pp. 355-361
[20]
SA Sahn, LB Reller, DA Taryle, VB Anthony, JT Good.
The contribution of leukocytes and bacteria to the low pH of empyema fluid.
Am Rev Respir Dis, 128 (1983), pp. 811-815
[21]
JE Heffner.
Infection of the pleural space.
Clin Chest Med, 20 (1999), pp. 607-622
[22]
RW Light.
Clinical manifestations and useful tests.
Pleural diseases, pp. 42-86
[23]
SA Sahn, JE Heffner.
Pleural fluid analysis.
Textbook of pleural diseases, pp. 191-209
[24]
JT Good, DA Taryle, SA Sahn.
The pathogenesis of low glucose, low pH malignant effusions.
Am Rev Respir Dis, 131 (1985), pp. 737-741
[25]
EP Lesho, BJ Roth.
Is pH paper an acceptable, low-cost alternative to the blood gas analyser for determining pleural fluid pH?.
Chest, 112 (1997), pp. 1291-1292
[26]
RP Byrd, TM Roy.
Pleural fluid pH determination.
Chest, 113 (1998), pp. 1426-1427
Copyright © 2005. Sociedad Española de Neumología y Cirugía Torácica (SEPAR)
Archivos de Bronconeumología
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?