Journal Information
Vol. 42. Issue 10.
Pages 489-491 (October 2006)
Share
Share
Download PDF
More article options
Vol. 42. Issue 10.
Pages 489-491 (October 2006)
Editorial
Full text access
Carbon Monoxide: Two Sides to the Same Coin
Visits
4216
Diego Castillo
Corresponding author
dcastillo@santpau.es

Correspondence. Dr. D. Castillo. Unitat de Funció Pulmonar. Departament de Pneumologia. Hospital de la Santa Creu i Sant Pau. Facultat de Medicina. Sant Antoni M. Claret, 167. 08025 Barcelona. España
, Pere Casan
Unitat de Funció Pulmonar, Departament de Pneumologia, Hospital de la Santa Creu i Sant Pau, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
This item has received
Article information
Full text is only aviable in PDF
REFERENCES
[1]
T Sjostrand.
Endogenous formation of carbon monoxide in man under normal and pathological conditions.
Scan J Lab Invest, 1 (1949), pp. 201-214
[2]
RF Corbum, WJ Williams, RE Foster, et al.
Effect of erythrocyte destruction on carbon monoxide production in man.
J Clin Invest, 43 (1964), pp. 1098-1103
[3]
T Necheles, U Rai, T Valaes, et al.
The role of hemolysis in neonatal hyperbilirubinemia as reflected in carboxyhemoglobin values.
Acta Paediatr Scand, 65 (1976), pp. 361-367
[4]
J Raub, M Mathieu-Nolf, N Hampson, et al.
Carbon monoxide poisoning—a public health perspective.
Toxicology, 145 (2000), pp. 1-14
[5]
R Tenhunen, HS Marver, R Schmid, et al.
The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase.
Proc Natl Acad Sci, 61 (1968), pp. 748-755
[6]
A Verma, DJ Hirsch, CH Glatt, et al.
Carbon monoxide: a putative neural messenger.
Science, 259 (1993), pp. 381-384
[7]
MD Maines.
Carbon monoxide: an emerging: regulator of cGMP in the brain.
Moll Cell Neurosci, 4 (1993), pp. 389-397
[8]
T Ingi, J Cheng, GV Ronnett, et al.
Carbon-monoxide: an endogenous modulator of the nitric oxide-cyclic GMP signaling system.
Neuron, 16 (1996), pp. 835-842
[9]
CT Wagner, W Durante, N Christodoulides, et al.
Hemodynamic forces induce the expression of heme oxygenase in cultured vascular smooth muscle cells.
J Clin Invest, 100 (1997), pp. 598
[10]
R Mortterlini, A Gonzales, R Foresti, et al.
Heme oxygenase-1-derived carbon monoxide contributes to the suppression of acute hypertensive responses in vivo.
Circ Res, 83 (1998), pp. 568-577
[11]
IA Sammut, R Foresti, JE Clark, et al.
Carbon monoxide is a major contributor to the regulator of vascular tone in aortas expressing high levels of haeme oxygenase-1.
Br J Pharmacol, 125 (1998), pp. 1437-1444
[12]
R Mortterllini, JE Clark, R Foresti, et al.
Carbon-monoxide-releasing molecules: characterization of biochemical and vascular activities.
Circ Res, 90 (2002), pp. 17-24
[13]
CC Watkins, D Boehning, AI Kaplin, et al.
Carbon monoxide mediates vasoactive intestinal polypeptide-associated nonadrenergic/noncholinergic neurotransmission.
PNAS, 101 (2004), pp. 2631-2635
[14]
CH Acevedo, A Ahmed, et al.
Hemeogygenase-1 inhibits human myometrial contractility via carbon monoxide and is upregulated by progesterone during pregnancy.
J Clin Invest, 101 (1998), pp. 949-955
[15]
R Henningsson, P Alm, P Ekström, et al.
Heme oxygenase and carbon monoxide: regulatory roles in islet hormone release.
Diabetes, 48 (1999), pp. 66-76
[16]
AM Choi, J Alam, et al.
Heine oxygenase-1: function, regulation, and implication of a novel stress-inducible protein in oxidant-induced injury.
Am J Respir Cell Moll Biol, 15 (1996), pp. 9-19
[17]
J Villar, SP Ribeiro, JB Mullen, et al.
Induction of the heat shock response reduces mortality rate and organ damage in a sepsis-induced acute lung injury model.
Crit Care Med, 22 (1994), pp. 914-921
[18]
MD Maines.
Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications.
FASEB J, 2 (1988), pp. 2557-2568
[19]
SL Camhi, J Alam, L Otterbein, et al.
Induction of heme oxygenase-1 gene expression by lipopolysaccharide is mediated by AP-1 activation.
Am J Respir Cell Mol Biol, 13 (1995), pp. 387-398
[20]
HL Liu, JY Zhao, L Chen, et al.
Changes of carbon monoxide, nitric oxide levels and heme oxygenase system in acute respiratory distress syndrome induced by oleic acid.
Zhonghua Yu Fang Yi Xue Za Zhi, 38 (2004), pp. 240-243
[21]
R Zegdi, O Fabre, N Lila, et al.
Exhaled carbon monoxide and inducible heme oxygenase expression in a rat model of postperfusion acute lung injury.
J Thorac Cardiovasc Surg, 126 (2003), pp. 1867-1874
[22]
S Mumby, RL Upton, Y Chen, et al.
Lung heme oxygenase-1 is elevated in acute respiratory distress syndrome.
Crit Care Med, 32 (2004), pp. 1130-1135
[23]
DM Suttner, K Sridhar, CS Lee, et al.
Protective effects of transient HO-1 overexpression on susceptibility to oxygen toxicity in lung cells.
Am J Physiol, 276 (2000), pp. L443-LL51
[24]
LE Otterbein, SL Otterbein, E Ifedigbo, et al.
MKK3 mitogenactivated protein kinase pathway mediates carbon monoxide-induced protection against oxidant-induced lung injury.
Am J Pathol, 163 (2003), pp. 2555-2563
[25]
S Inoue, M Suzuki, Y Nagashima, et al.
Transfer of heme oxygenase 1 cDNA by a replication-deficient adenovirus enhances interleukin 10 production from alveolar macrophages that attenuates lipopolysaccharide-induced acute lung injury mice.
Hum Gene Ther, 12 (2001), pp. 967-979
[26]
L Otterbein, SL Sylvester, AM Choi, et al.
Hemoglobin provides protection against lethal endotoxemia in rats: the role of heme oxygenase-1.
Am J Respir Cell Mol Biol, 13 (1995), pp. 595-601
[27]
LE Otterbein, LL Mantell, AMK Choi.
Carbon monoxide provides protection against hyperoxic lung injury.
Am J Physiol, 276 (1999), pp. L688-LL94
[28]
JK Sarady, SL Otterbein, F Liu, et al.
Carbon monoxide modulates endotoxin-induced production of granulocyte macrophage colony-stimulating factor in macrophages.
Am J Respir Cell Mol Biol, 27 (2002), pp. 739-745
[29]
JL Taylor, MS Carraway, CA Piantadosi, et al.
Lung-specific induction of heme oxysenase-1 and hyperoxic lung injury.
Am J Physiol, 274 (1998), pp. L582-LL90
[30]
T Minamino, H Christou, CM Hsieh, et al.
Targeted expression of heme oxygenase-1 prevents the pulmonary inflammatory and vascular responses to hypoxia.
Proc Natl Acad Sci USA, 98 (2001), pp. 8798-8803
[31]
T Fujita, K Toda, A Karimova, et al.
Paradoxical rescue from ischemic lung injury by inhaled carbon monoxide driven by depression of fibrinolysis.
Nat Med, 7 (2001), pp. 598-604
[32]
PA Dennery, G Visner, YH Weng, et al.
Resistance to hyperoxia with heme oxygenase-1 disruption: role of iron.
Free Radiac Biol Med, 34 (2003), pp. 124-133
[33]
CE Clayton, MS Carraway, HB Suliman, et al.
Inhaled carbon monoxide on acute lung injury in rats.
Am J Physiol Lung Cell Mol Physiol, 281 (2001), pp. L949-LL57
[34]
S Ghosh, MR Wilson, S Choudhury, et al.
Effects of inhaled carbon monoxide on acute lung injury in mice.
Am J Physiol Lung Cell Mol Physiol, 288 (2005), pp. L1003-L10L9
[35]
Y Jin, AMK Choi, et al.
Cytoprotection of heme oxygenase-1/carbonmonoxide in lung injury.
Proc Am Thorac Soc, 2 (2005), pp. 232-235
[36]
NR Prabhakar.
Endogenous carbon monoxide in control of respiration.
Respiratory Physiology, 114 (1998), pp. 57-64
[37]
FM Paro, AA Steiner, PM de Paula, et al.
Central heme oxygenase-carbon monoxide pathway in the control of breathing under normoxia and hypoxia.
Respir Physiol Neurobiol, 130 (2002), pp. 151-160
[38]
P Casan, RM Miralda, J Sanchis, et al.
Concentración de carboxihemoglobina (COHb) en una población urbana de pacientes no fumadores.
Arch Bronconeumol, 30 (1994), pp. 517-518
Copyright © 2006. Sociedad Española de Neumología y Cirugía Torácica (SEPAR)
Archivos de Bronconeumología
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?