Journal Information
Vol. 20. Issue 2.
Pages 60-69 (March - April 1984)
Share
Share
Download PDF
More article options
Vol. 20. Issue 2.
Pages 60-69 (March - April 1984)
Full text access
Alfa 1 antitripsina y alfa 2 macroglobulina en esputo infectado y no infectado de pacientes con enfermedad pulmonar obstructiva cronica. Significacion fisiopatologica de ambas proteinas en el pulmon
Alpha 1-antitrypsin and alpha 2-macroglobulin in infected and non-infected sputum from patients with chronic obstructive pulmonary disease. Physiopathological significance of the two proteins in the lung
Visits
4998
L. Oteo Ochoa, M. Maties Prats, J.L. De La Cruz Rios, A. Izquierdo Del Amo, J.L. Cruz Ramos, C. Martin Serrano, J. Picher Nuñez, A. Sueiro Bendito
Servicio de Neumología. C.E. Ramón y Cajal de la S.S. Madrid
M. Diaz Enriquez*
* Servicio de Bioquímica. C.E. Ramón y Cajal de la S.S. Madrid
This item has received
Article information

Alfa 1 antitripsina (α1 AT) y alfa 2 macroglobulina (α2 MG) son inhibidores enzimáticos con importantes funciones en la protección del tejido conectivo pulmonar.En el presente trabajo se determinaron ambas proteínas a nivel sérico y en fase sol de esputo en dos grupos de pacientes portadores de enfermedad pulmonar obstructiva crónica con y sin infección respiratoria del tracto inferior.

Durante los períodos de infección pulmonar, los niveles séricos de α1 AT aumentaron significativamente probablemente por incremento del metabolismo proteico, mientras que la concentración de α2 MG durante este mismo período decreció de forma significativa, sugiriendo bien un aumento del catabolismo proteico, una reducción de la capacidad de síntesis o la formación de complejos estables α2 MG-endopeptidasas bacterianas. Por otra parte, las tasas de α1 AT y α2 MG en esputo y su relación (esputo/suero) aumentaron significativamente en el transcurso de las infecciones pulmonares, evidenciando un importante aumento de la difusión pasiva proteica desde el plasma a la secreción bronquial. Cuando la relación esputo/suero de ambas macromoléculas fue corregida para la albúmina, no existieron diferencias significativas al comparar las distribuciones de ambaspoblaciones analizadas, sugiriendo un mecanismo de génesis común en los grupos con y sin infección pulmonar. La buena correlación existente entre α1, AT y albúmina en presencia de infección respiratoria del tracto inferior confirma que la trasudación proteica es un mecanismo fisiopatológico preferencial.

Las bajas concentraciones detectadas de α1 AT y α2 MG en la secreción bronquial en el grupo de sujetos sin infección pulmonar, son indicativas de su limitada contribución antiproteasa en este medio biológico. Durante la infección pulmonar la proteína α2 MG aumentó significativamente en esputo por efecto de la difusión pasiva desde el plasma y quizá por estimulación inespecífica de la producción local, pudiendo en esta circunstancia desarrollar una importante función inhibidora de la actividad enzimática libre. Sin embargo, a pesar de la contribución de α2 MG a la corrección del disbalance entre proteasas neutras e inhibidores, los sujetos portadores de EPOC con infección pulmonar intercurrente mantienen un estado de desequilibrio enzimático con elevado riesgo para la integridad del tejido conectivo pulmonar.

Both proteins were determined in this study in the serum and in a colloidal solution of sputum in two groups of patients with chronic obstructive lung disease (COLD) with infection and without lower respiratory infection.

The serum levels of α1 AT augmented significantly during pulmonary infection probably due to protein metabolism, while α2 MG concentration decreased significantly during the same period suggesting either an increase in the protein catabolism, a reduction of the synthetic capacity, or the formation of stable complexes of α2 MG-bacterial endopeptidases. On the other hand, the levels of α1 AT and α2 MG in sputum and their ratio (sputum/serum) augmented markedly during pulmonary infection, demonstrating a significant increase in the protein passive diffusion from the plasma to the bronchial secretions. There were no significant differences in the

ratio sputum/serum of both macromolecules when comparing the 2 groups analyze after correcting for the albumin. This suggests a common original mechanism in the groups with and without pulmonary infection. The strong correlation between α1 AT and albumin with lower respiratory infection confirms that protein transudate is a preferential physiopathological mechanism.

The low concentrations of α1 AT and α2 detected in bronchial secretions of patients without pulmonary infection indicate their limited contribution to antiprotease activity in this biological medium. α2 MG protein increased in the sputum significantly during pulmonary infection due to the passive diffusion from the plasma and perhaps too to the nonspecific stimulation of local production. An important inhibitory function of the free enzyme activity could be developed in this case. Nevertheless, patients with COLD and recurrent pulmonary infections mantain a State of enzymatic disequilibrium in spite of the contribution of α2 MG in the correction of the disequilibrium between neutral proteases and inhibitors. This constitutes an important risk for the integrity of the pulmonary connective tissue.

Full text is only aviable in PDF
Bibliografia
[1.]
C. Kuhn, R.M. Senior.
The role of elastases in the development of emphysema.
Lung, 155 (1978), pp. 185-197
[2.]
A. Janoff, R.K. White, H. Carp, S. Harel, R. Deering, D. Lee.
Lung injury by leukocytic protease.
Am J Pathol, 97 (1979), pp. 111-135
[3.]
O. Auerbach, E.C. Hammond, L. Garfinkel, C. Benante.
Relation of smoking and age to emphysema. Whole lung study.
New Engl J Med, 286 (1972), pp. 853-857
[4.]
K. Ohlsson, H. Tegner.
Granulocyte collagenase, elastase and plasma protease inhibitors in purulent sputum.
Europ J Clin Invest, 5 (1975), pp. 221-227
[5.]
K. Ohlsson.
Polymorphonuclear leukocyte collagenasa.
En: Collagenase in normal pathological connective tissues, pp. 209-222
[6.]
R.M.J. Baugh, J. Travis.
Human leukocyte granule elastase: rapid isolation and characterization.
Biochemistry, 15 (1976), pp. 836-841
[7.]
R.J. Rodríguez, R.R. White, R.M. Senior, E.A. Levine.
Elastase release from human alveolar macrophages; comparison between smokers and non-smokers.
Science, 198 (1977), pp. 313-314
[8.]
A.J. Barret, P.M. Starkey.
The interactions of 2-macroglobulin with proteinases. Characteristics and specifity of the reaction and a hypotesis concerning its molecular mechanism.
Biochem J, 133 (1973), pp. 709-724
[9.]
D.Y. Twumasi, I.E. Liener, M. Galdston, V. Levytska.
Activation of human leukocyte elastase by human 2-macroglobulin.
Nature, 267 (1977), pp. 61-63
[10.]
K. Ohlsson.
Granulocyte collagenase and elastase and their interactions with alpha 1 antitrypsin and alpha 2 macroglobulin.
En: Proteases biological control, pp. 591-602
[11.]
S. Eriksson.
Studies in alpha 1 antitrypsin deficiency.
Acta Med Scand, 177 (1965), pp. 1-85
[12.]
Editorial.
The pathogenesis of pulmonary emphysema.
[13.]
J.E. Gadek, G.W. Hunninghake, G.A. Fells, R.L. Zimmerman, B.A. Keogh, R.G. Crystal.
Evaluation of the protease-anti-protease theory of human destructive lung disease.
Bull Europ Physiopath Resp, 16 (1980), pp. 27-40
[14.]
S. Eriksson.
Pulmonary emphysema and alpha 1 antitrypsin deficiency.
Acta Med Scand, 177 (1964), pp. 175-179
[15.]
F. Kueppers.
Inherited differences in alpha 1 antitrypsin.
En: Genetic determinants of pulmonary disease, pp. 23-74
[16.]
A. Janoff, B. Sloan, G. Weinbaum, V. Damiano, R.A. Sandhaus, J. Elias, P. Kimbel.
Experimental emphysema induced with purified human neutrophil elastase. Tissue localization of the instilled protease.
Am Rev Respir Dis, 115 (1977), pp. 461-478
[17.]
R.M. Senior, H. Tegner, C. Kuhn, K. Ohlsson, B.C. Starcher, J.A. Pierce.
The induction of pulmonary emphysema with human leukocyte elastase.
Am Rev Respir Dis, 116 (1977), pp. 469-475
[18.]
J. Lieberman.
Elastase, collagenase, emphysema and alpha 1 antitrypsin deficiency.
Chest, 70 (1976), pp. 62-67
[19.]
V. Kobrle, J. Hurych, R. Holuva.
Changes in pulmonary connective tissue after a single intatracheal instillation of papain in the rat.
Am Rev Respir Dis, 125 (1982), pp. 239-243
[20.]
C. Kuhn, S.-Y. Yu, M. Chraplyvy, H.E. Linder, R.M. Senior.
The induction of emphysema with elastase. II Changes in conective tissue.
Lab Invest, 34 (1976), pp. 372-380
[21.]
J.B. Karlinsky, G.L. Sinder.
State of the art. Animal models of emphysema.
Am Rev Respir Dis, 117 (1978), pp. 1109-1133
[22.]
P. Gross, E.Z. Pfitzer, E. Tolker, N.A. Babyak, M. Kaschak.
Experimental emphysema: its production with papain in normal and silicotic rats.
Arch Environ Hlth, 11 (1965), pp. 50-58
[23.]
P.D. Kaplan, C. Kuhn, J.A. Pierce.
The induction of emphysema with elastase.
J Lab Clin Med, 82 (1973), pp. 349-365
[24.]
V. Marco, B. Mass, D.R. Meranze, G. Weinbaum, P. Kimbel.
Introduction of experimental emphysema in dogs using leukocyte homogenates.
Am Rev Respir Dis, 104 (1971), pp. 595-598
[25.]
J.E. Gadek, J.A. Kelman, S.E. Weinberger, A.L. Horwitz, H.Y. Reynolds, J.D. Fulmer, R.G. Crystal.
Collagenase in the lower respiratory tract of patients with idiophatic pulmonary fibrosis.
New Engl J Med, 301 (1979), pp. 737-742
[26.]
A.L. Horwitz, A.J. Hance, R.G. Crystal.
Granulocite collagenase: selective digestion of type 1 over type 111 collagen.
Proc Nat Acad Sci Wash, 74 (1977), pp. 897-901
[27.]
A. Janoff, G. Feinstein, C.J. Malemud, J.M. Elias.
Degradaron if a cartilage proteoglican by human leukocyte granule neutral proteases a model of joint injury.
J Clin Invest, 57 (1976), pp. 615-624
[28.]
G.M. Turino, S. Keller, P. Chrzanowski, M. Osman, J. Cerreta, I. Mandl.
Lung elastin content in normal and emphysematous lungs.
Bull Europ Physiopath Resp, 16 (1980), pp. 43-56
[29.]
A.J. Hance, R.G. Crystal.
The conective tissue of the lung.
Am Rev Respir Dis, 112 (1975), pp. 657-711
[30.]
M.S. Dunnill.
Aetiology of emphysema.
Bull Europ Physiopath Resp, 15 (1979), pp. 1015-1029
[31.]
D.C.S. Hutchinson, P.J.L. Cook, C.E. Barter, H. Harris, P. Hugh-Jones.
Pulmonary emphysema and 1-antitrypsin deficiency.
Brit Med J, 1 (1971), pp. 689-694
[32.]
W.M. Thurlbeck, R.C. Ryder, N. Sternby.
A comparative study of the severity of emphysema in necropsy populations in three different countries.
Am Rev Respir Dis, 109 (1974), pp. 239-248
[33.]
A. Janoff, H. Carp.
Possible mechanisms of emphysema in smokers. Cigarrette smoke condensate suppresses protease inhibition in vitro.
Am Rev Respir Dis, 116 (1977), pp. 65-72
[34.]
F. Carp, A. Janoff.
Possible mechanisms of emphysema smokers. In vitro suppression of serum elastase inhibitory capacity by antioxidants.
Am Rev Respir Dis, 118 (1978), pp. 617-621
[35.]
D.F. Mosher, O. Saksela, A. Valeri.
Synthesis and secretion of alpha 2 macroglobulin by cultured adherent lung cells.
J Clin Invest, 60 (1978), pp. 1036-1045
[36.]
R.R. White, A. Janoff, H.P. Godfrey.
Secretion of alpha 2 macroglobulin by human alveolar macrophages.
Am Rev Respir Dis, 121 (1980), pp. 418 (A)
[37.]
D.F. Mosher, D.A. Wing.
Syntesis and secretion of alpha 2 macroglobulin by cultured human fibroblast.
J Exp Med, 143 (1976), pp. 462-467
[38.]
K. Hochstrasser.
Proteinase (elastase) inhibitor from the ciliated membranes of the human respiratory tract.
Methods Enzymol, 45 (1976), pp. 869-872
[39.]
R.B. Low, G.S. Davis, M.S. Giancola.
Biochemical analyses of bronchoalveolar lavage fluids of healthy human volunteer smokers and non smokers.
Am Rev Respir Dis, 118 (1978), pp. 863-875
[40.]
B. Robert, L. Robert.
Studies on the structure of elastin and the mechanims of action of elastolytic enzymes.
pp. 665-670
[41.]
K. Ohlsson, H. Tegner.
Inhibition of elastase from granulocytes by the low molecular weight bronchial protease inhibitor.
Scand J Clin Lab Invest, 36 (1976), pp. 437-445
[42.]
K. Ohlsson, M. Delshammar.
Interactions between granulocyte elastase and collagenase and the plasma proteinase inhibitors in vitro and in vivo.
En: Dynamics of conective tissue macromolecules, pp. 259-275
[43.]
A. Hayem, A. Scharfman, A. Laine, J.J. Lafitte, B. Sablonniére.
Proteases and antiproteases in bronchoalveolar lavage.
Bull Europ Physiopath Resp, 16 (1980), pp. 247-258
[44.]
Medical Research Council.
Definition and classification of chronic bronchitis.
Lancet, 1 (1965), pp. 775-799
[45.]
G. Mancini, A.D. Carbonara, J.F. Heremans.
Immunochemical quantitation of antigens by single radial immunodiffusion.
Immunochemistry, 2 (1965), pp. 235-254
[46.]
K. Olhsson.
Alpha 1 antitrypsin and alpha 2 macroglobulin, interactions with human neutrophil collagenase and elastase.
Ann NY Acad Sci, 256 (1975), pp. 409-419
[47.]
R.A. Stokley, M. Mistry, A.R. Bradwell, D. Burnett.
A study of plasma proteins in the sol phase of sputum from patients with chronic bronchitis.
Thorax, 34 (1979), pp. 777-782
[48.]
A.B. Cohen.
Interrelationships between the human alveolar macrophage and alpha 1 antitrypsin.
J Clin Invest, 52 (1973), pp. 2793-2799
[49.]
D. Burnett, R.A. Stokley.
Serum and sputum alpha 2 macroglobulin in patients with chronic obstrucive airways disease.
Thorax, 36 (1981), pp. 512-516
[50.]
T.B. Barnett, D. Gottovi, M.A. Johnson.
Protease inhibitors in chronic obstructive pulmonary disease.
Am Rev Respir Dis, 111 (1975), pp. 587-593
Copyright © 1984. Sociedad Española de Neumología y Cirugía Torácica
Archivos de Bronconeumología
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?