ROBOTIC TRACHEOBRONCHOPLASTY: A PROMISING SOLUTION FOR TRACHEOBRONCHOMALACIA PATIENTS

 $M^{\underline{a}}$ Teresa Gómez Hernández María Suárez Valor Marcelo F. Jiménez

PII: \$0300-2896(25)00155-3

DOI: https://doi.org/doi:10.1016/j.arbres.2025.04.016

Reference: ARBRES 3797

To appear in: Archivos de Bronconeumologia

Received Date: 25 September 2024

Accepted Date: 24 April 2025

Please cite this article as: Teresa Gómez Hernández M, Valor MS, Jiménez MF, ROBOTIC TRACHEOBRONCHOPLASTY: A PROMISING SOLUTION FOR TRACHEOBRONCHOMALACIA PATIENTS, *Archivos de Bronconeumología* (2025), doi: https://doi.org/10.1016/j.arbres.2025.04.016

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2025 Published by Elsevier España, S.L.U. on behalf of SEPAR.

TYPE OF ARTICLE: CLINICAL LETTER

TITTLE: ROBOTIC TRACHEOBRONCHOPLASTY: A PROMISING SOLUTION FOR TRACHEOBRONCHOMALACIA PATIENTS

AUTHORS:

- Mª Teresa Gómez Hernándeza,b,c
- María Suárez Valor^d
- Marcelo F. Jiméneza,b,c

INSTITUCIÓN:

- a. Servicio de Cirugía Torácica, Hospital Universitario de Salamanca, Salamanca, España
- b. Universidad de Salamanca, Salamanca, España
- c. Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, España
- d. Servicio de Neumología. Hospital El Bierzo, Ponferrada, España

CORRESPONDING ADDRESS TO:

Dr. MT Gómez-Hernández

Salamanca University Hospital

37007 Salamanca, Spain

e-mail: mtgh@usal.es

To the Director,

Tracheobroncomalacia (TBM) is a chronic condition characterized by weakening of the tracheobronchial cartilage, resulting in excessive dynamic airway collapse, especially during

expiration. Tracheobronchoplasty (TBP), is the most common surgical repair for TBM. However, it is technically demanding and carries significant perioperative risks¹. Recently, robotic TBP (R-TBP) has been introduced², enhancing the traditional open technique.

We present the case of a 53-year-old woman with an unremarkable medical history who was diagnosed with COVID-19 pneumonia two years prior, requiring hospital admission but no orotracheal intubation. Following recovery, she developed a persistent cough and dyspnoea. Further evaluation, including awake dynamic bronchoscopy and dynamic computed tomography, revealed a tracheobronchial collapse exceeding 90% (Figure 1A), leading to a diagnosis of TBM. Pulmonary function tests (PFT) showed a forced expiratory volume in 1 second (FEV1) of 74% and a forced vital capacity (FVC) of 65%. The patient had a poor quality of life, with a St George's Respiratory Questionnaire (SGRQ) score of 86.4 and a 6-minute walk test (6-MWT) distance of 120 meters (32% of predicted). Initial management included 24-hour continuous positive airway pressure therapy, followed by placement of a self-expanding Y-shaped metallic stent for 6 months to assess symptom improvement and/or resolution. Although initially well tolerated, the patient progressively developed mucus plugging and recurrent infections, resulting in limited symptomatic relief. Due to persistent symptoms and severity of TBM, R-TBP was performed. The procedure involved suturing a polypropylene mesh to the posterior cartilaginous rings of the trachea, both mainstem bronchi, and the bronchus intermedius, with plication and fixation of the redundant posterior membranous wall to the mesh (Figure 1B-C) as previously described by Lazzaro et al². The postoperative period was uneventful, and the patient was discharged on day eight. At two month, she reported complete symptom resolution, with improved PFT (FEV1: 89% and FVC: 77%), SGRQ scores (51.3) and a 6-MWT distance of 300 meters (81% of predicted).

Diagnosis and management of TBM remain challenging. A thorough diagnostic evaluation is essential to accurately confirm TBM, differentiate it from excessive dynamic airway collapse

(EDAC)³, and assess severity. This evaluation includes dynamic computed tomography with

ultralow-dose forced exhalation imaging and cinematic reconstructions, as well as awake

dynamic bronchoscopy. TBP is indicated in patients with >90% dynamic airway collapse and

persistent symptoms despite optimal medical treatment⁴. The primary goal of surgery is to

stabilize the posterior membranous wall of the trachea and bronchi. Traditionally, TBP has been

performed via right posterolateral thoracotomy. However, the robotic approach has emerged in

recent years as a safe and less invasive alternative that reduces the morbidity of open surgery⁴.

R-TBP offers several technical advantages, including enhanced three-dimensional visualization,

precise dissection and suturing with wristed instruments, and improved surgeon ergonomics.

Collectively, these features may underlie the favourable outcomes described in the literature,

including substantial improvements in pulmonary function and quality of life^{4,5}. These results

further support the role of R-TBP as a safe and effective surgical option for appropriately selected

patients with severe TBM.

FUNDING STATEMENT: None.

CONFLICTS OF INTEREST: The authors declare no conflicts of interest.

ARTIFICIAL INTELLIGENCE INVOLVEMENT: The authors declare that any of

the material

has been produced with the help of any artificial intelligence software or tool.

AUTHOR CONTRIBUTION

Declaration of substantial contributions to:

1. Study conception and design: All authors.

- 2. Acquisition of data: All authors.
- 3. Analysis and interpretation of data: All authors.
- 4. Drafting of the manuscript or critical revision for relevant intellectual content: MTGH, MFJ
- 5. Final approval of the version to be submitted: All authors.

All authors have read and agreed to the published version of the manuscript.

REFERENCES

- 1. Buitrago DH, Majid A, Alape DE, Wilson JL, Parikh M, Kent MS, et al. Single-Center Experience of Tracheobronchoplasty for Tracheobronchomalacia: Perioperative Outcomes. Ann Thorac Surg. 2018;106:909-15.
- 2. Lazzaro RS, Bahroloomi D, Wasserman GA, Patton BD. Robotic Tracheobronchoplasty: Technique. Oper Tech Thorac Cardiovasc Surg. 2022;27:218-26.
- 3. Lee S, Medina B, Lazzaro R. Tracheobronchomalacia vs Excessive Dynamic Airway Collapse. Thorac Surg Clin. 2025;35:123-9.
- 4. Lazzaro R, Patton B, Lee P, Karp J, Mihelis E, Vatsia S, et al. First series of minimally invasive, robot-assisted tracheobronchoplasty with mesh for severe tracheobronchomalacia. J Thorac Cardiovasc Surg. 2019;157:791-800.
- Inra ML, Wasserman GA, Karp J, Cohen S, Scheinerman SJ, Lazzaro RS. Improvement in postoperative lung function in patients with moderate to severe airway obstruction after robotic-assisted thoracoscopic tracheobronchoplasty. J Thorac Cardiovasc Surg. 2023;165:876-85.

FIGURE LEGEND

Figure 1. A. Preoperative awake dynamic bronchoscopy showing >90% expiratory collapse of the trachea, consistent with severe tracheobronchomalacia. B. Intraoperative view depicting the suturing of the polypropylene mesh to the posterior wall of the trachea and mainstem bronchi during robotic-assisted tracheobronchoplasty. C. Postoperative awake bronchoscopy demonstrating successful plication and stabilization of the posterior membranous tracheal wall.

