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Jet ventilation, a technique involving intermittent occlusion of airflow from a 

high-pressure source through a pneumatic or electronically controlled interruption 

device, generates a tidal volume (VT) through a combination of driving airflow and 

entrained air via the Venturi effect, a phenomenon where high-speed airflow draws in 

surrounding air.1 Key clinical variables include ventilation frequency (F), driving 

pressure (DP), inspiratory-to-expiratory ratio （I:E）, and the angle and entry depth of 

jet needle. The resultant VT to the lungs is influenced by factors such as the volume of 

the driving gas, the efficiency of Venturi entrainment, and the physiological condition 

of the lungs.2,3 Monitoring ventilation, especially airway pressure and carbon dioxide 

level, poses challenges, potentially leading to inadequate or excessive ventilation.4 

Inadequate ventilation can result in hypoxemia and hypercapnia, while prolonged 
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exposure to high tidal volumes increases the risk of volume-pressure-related lung 

injury.5 

VT is not directly adjustable and results from the interplay of factors such as DP, 

jet needle (casing) resistance, inspiratory time, entrainment volume, and respiratory 

system impedance (lung compliance, tracheal resistance).6 Notably, the inner 

diameter (ID) of the jet needle is overlooked in clinical practice, with no industry 

standards referencing its importance.  

In this study, a jet ventilator (TwinStream™, Austria) connected to the 

normal-frequency jet tube, creating a link to a simulated airway (PE plastic pipe with a 

ID of 14 mm and a length of 20 cm). Three types of needles (ID: N1=1.2 mm, N2=1.6 

mm, N3=1.9 mm) with lengths of 25 mm were selected. The one-way valve function of 

the DrägerFabius anesthesia machine's integrated air circuit (Germany) was utilized 

and connected to a simulated lung (DrägerSelfTestLung™, Germany, compliance: 45 

mL/cmH2O). A gas-collecting plastic bag was utilized to collect exhalation flow, and 

the gas volume was quantified using a high-precision industrial flowmeter 

(MF/FS4000, USA) (Figure 1-A). Six distinct frequencies (10, 14, 18, 22, 26, 30 min-1) 

were examined under six different DPs (0.6, 0.8, 1.0, 1.2, 1.4, 1.6 bar). Each 

parameter setting was replicated five times per group. 

SPSS version 26.0 and GraphPad Prism 9 software were employed for statistical 

analyses and to facilitate the comparison of findings. Upon maintaining a consistent 

DP, a significant difference (P < 0.05) was observed in both the MV and VT across 

three needles at six frequencies (with the exception of DP=1.6 bar, N2 vs. N3, P > 0.05) 

(Figure 1-B, F). When operating at the same frequency, both the MV and VT exhibited 
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significant differences across three needles at six DPs (P < 0.05) (Figure 1-D, H). 

Multiple linear regression analysis revealed significant effects of DP, needle diameter, 

and frequency on both MV and VT (P<0.0001) (Figure 1-B, F). 

Literature on jet ventilation commonly reported the use of experimental jet 

needles with varying inner diameters, ranging from 0.7 to 3 mm, exhibiting 

considerable variability.7-9 Regardless of whether an adaptor for the jet ventilator or a 

laryngoscope equipped with jet ventilation capabilities is employed, the IDs of the 

integrated jet needles are not uniform.10-12 Whether utilizing an adaptor for the jet 

ventilator or a laryngoscope equipped with jet ventilation is a consistent challenge. 

Drawing from the simplified Bernoulli equation for an ideal gas (P + 12ρV2= normal, 

where P represents pressure, ρ denotes density, and V signifies velocity), we 

observed that a reduction in the ID of the injection needle correlates with an increase 

in flow velocity, assuming a normal DP—consequently, a smaller ID results in higher 

flow velocities.13 Applying Poiseuille's law (Q = π × r^4 × Δp (8ηL)-1, where Q is the 

volume flowrate, r is the radius of the pipe, Δp is the pressure difference, η the fluid 

viscosity, and L the length of the pipe), gas flow is primarily dependent on the ID of the 

injection needle when the DP and suction time are normal.14 A larger ID corresponds 

to an increased gas flow. Therefore, variations in the ID of the injection needle, while 

holding other parameters normal, result in different velocities and flow rates of ejected 

air, subsequently impacting ventilation effectiveness in a simulated lung model. 

Previous studies have suggested that a reduction in the ID of the jet needle correlates 

with a decrease in the VT under identical setting parameters.15 The findings of the 

current study are consistent with those reported in the literature. 
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For a given jet needle, we found that VT exhibited a positive correlation with DP 

and an inverse correlation with frequency. Conversely, MV demonstrated a positive 

correlation with both DP and frequency. During the breathing cycle, a shorter 

inspiratory phase results in both a reduced jet-driven volume and a decreased 

entrainment volume, leading to a lower VT. As the frequency escalates, the inspiratory 

time correspondingly contracts. According to the law of conservation of energy, the 

potential energy of the airflow in each respiratory cycle decreases, evident in a decline 

in VT. This phenomenon is attributed to the relationship between frequency and the 

volume of gas delivered. While the volume of gas administered per minute remains 

normal, increased frequency results in a reduced volume of gas per breath. 

Consequently, the entrained volume of gas decreases in tandem with the volume per 

respiratory cycle. 

Upon reaching a driving pressure of 1.6 bar, the VTs generated by injection 

needles N2 and N3 both exhibited a ceiling effect, with no statistically significant 

difference observed in MV (Table 1, Figure 1-B). This outcome suggests that in target 

lungs jet ventilation, needles with larger diameters more readily approach the 

physiological ventilation limit. Consequently, any further increase in driving pressure 

may result in volumetric lung injury. When employing a jet needle with a larger ID and 

high DP to a normal adult, accurately evaluating the MV and VT excursion visually can 

become challenging for an anesthesiologist. Prolonged ventilation with high VT has 

the potential to lead to ventilator-associated acute lung injury (VILI) and 

hyperventilation.9 Consequently, vigilance is imperative in this regard. While obesity is 

often considered a relative contraindication for jet ventilation, certain studies have 
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reported successful use of high DP (4 bar) in obese patients (BMI ≥ 30).16 This 

success may be attributed to the increased DP and resultant higher VT associated 

with jet ventilation. 

The primary limitation of this study lies in the inability of the chosen simulated 

lung to accurately replicate the airway resistance of a real airway. Furthermore, the 

model lung volume and compliance were fixed, and the needle was positioned 

vertically towards the simulated airway opening. Actual jet ventilation is influenced by 

a multitude of variables, including the angle and entry depth of jet needle, airway 

obstruction, airway resistance, lung compliance, and other physical factors. Future 

research needs to explore the impact of these variables, such as jet needle angle, 

depth, and airway obstruction, on ventilation efficiency. Further validation through 

animal or clinical trials is necessary. 

Conclusion: In the process of jet ventilation, driving pressure, the jet needle's 

inner diameter, and frequency are critical determinants of minute ventilation and tidal 

volume. Notably, the jet needle's inner diameter, a significant variable, has frequently 

been underestimated in its contribution to ventilation efficacy. This element 

necessitates additional research to confirm its importance. 
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Table 1 Comparison of minute volume (MV) and tidal volume （VT）among three types of jet needles in jet ventilation. The applied driving pressure (DP) ranged from 

0.6 to 1.6 bar, while the frequency (F) varied from 10 to 30 cycles per minute. Data are presented as mean ± standard deviation (n=6). 

   MV (L)    VT  (mL)  

  N1
a,b N2

a,c N3
b,c  N1

a,b N2
a,c N3

b,c 

DP (bar)         

0.6  3.321±(1.116)a,b 4.467±(1.475)a,c 5.417±(1.847)b,c  168.8±(10.0)a,b 227.0±(12.1)a,c 274.3±(11.5)b,c 

0.8  4.179±(1.402)a,b 5.593±(1.876)a,c 7.364±(2.445)b,c  212.2±(11.5)a,b 284.2±(17.7)a,c 373.8±(18.3)b,c 

1.0  5.048±(1.687)a,b 7.451±(2.213)a,c 11.076±(3.170)b,c  256.2±(12.8)a,b 382.7±(33.1)a,c 571.5±(57.4)b,c 

1.2  6.129±(2.051)a,b 9.112±(2.988)a,c 13.490±(3.549)b,c  310.9±(14.6)a,b 463.1±(24.3)a,c 700.5±(89.3)b,c 

1.4  7.646±(2.450)a,b 12.321±(3.430)a,c 17.476±(5.002)b,c  389.7±(23.9)a,b 637.2±(68.6)a,c 900.1±(89.1)b,c 

1.6  10.107±(2.850)a,b 15.723±(3.713)a,d 18.461±(5.622)b,d  521.7±(53.6)a,b 825.4±(130.0)a,c 944.8±(72.0)b,c 

F (min-1)         

10  3.396±(1.452)a,b 5.293±(2.678)a,c 6.844±(2.966)b,c  339.6±(145.2)a,b 529.3±(267.8)a,c 684.4±(296.6)b,c 

14  4.535±(1.973)a,b 7.040±(3.687)a,c 9.512±(4.216)b,c  323.9±(140.9)a,b 502.8±(263.3)a,c 679.4±(301.2)b,c 

18  5.658±(2.502)a,b 8.855±(4.670)a,c 11.703±(5.296)b,c  314.3±(139.0)a,b 491.9±(259.5)a,c 650.2±(294.1)b,c 

22  6.727±(2.920)a,b 10.103±(4.734)a,c 13.669±(6.093)b,c  305.7±(132.7)a,b 459.2±(215.2)a,c 621.3±(276.9)b,c 

26  7.596±(2.963)a,b 11.181±(4.876)a,c 15.207±(6.497)b,c  292.1±(114.0)a,b 430.0±(187.5)a,c 584.9±(249.9)b,c 

30  8.520±(3.138)a,b 12.195±(4.971)a,c 16.345±(6.673)b,c  284.0±(104.6)a,b 406.5±(165.7)a,c 544.8±(222.4)b,c 

Note: a, N1 vs. N2, P < 0.05; b, N1 vs. N3, P < 0.05; c, N2 vs. N3, P < 0.05; d, N2 vs. N3, P > 0.05 . 
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Figure 1 Significant differences were observed in both the MV and VT among the 
three types of jet needles under identical parameter settings. A: Schematic diagram 
of experimental set-up. The respiratory circuit diagram includes the following 
components, as indicated by the legend: (A) the interface for the suction line; (B) 
the one-way valve for suction; (C) the one-way valve for expiration; and (D) the 
exhaust outlet. B, C, D, E: Perform a comparative analysis of minute ventilation in 
response to varying drive pressures and frequencies for the three needles. F, G, H, 
I: Perform a comparative analysis of tidal volume in response to varying drive 
pressures and frequencies for the three needles. 
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