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Jet Needle Inner Diameter: A Key Factor in

Modulating Ventilation Outcomes in  Clinical

Practice – An Overlooked Determinant

To the Director,

Jet ventilation, a  technique involving intermittent occlusion of

airflow from a  high-pressure source through a  pneumatic or  elec-

tronically controlled interruption device, generates a  tidal volume

(VT)  through a combination of driving airflow and entrained air

via the Venturi effect, a  phenomenon where high-speed airflow

draws in surrounding air.1 Key clinical variables include ventila-

tion frequency (F), driving pressure (DP), inspiratory-to-expiratory

ratio (I:E), and the angle and entry depth of jet needle. The resul-

tant VT to the lungs is  influenced by  factors such as the volume

of the driving gas, the efficiency of Venturi entrainment, and the

physiological condition of the lungs.2,3 Monitoring ventilation,

especially airway pressure and carbon dioxide level, poses chal-

lenges, potentially leading to inadequate or excessive ventilation.4

Inadequate ventilation can result in  hypoxemia and hypercapnia,

while prolonged exposure to  high tidal volumes increases the risk

of volume–pressure-related lung injury.5

VT is not directly adjustable and results from the interplay of

factors such as DP, jet needle (casing) resistance, inspiratory time,

entrainment volume, and respiratory system impedance (lung

compliance, tracheal resistance).6 Notably, the inner diameter (ID)

of the jet needle is  overlooked in  clinical practice, with no industry

standards referencing its importance.

In this study, a jet ventilator (TwinStreamTM, Austria) connected

to the normal-frequency jet tube, creating a  link to  a simulated air-

way (PE plastic pipe with a  ID of 14 mm  and a length of 20 cm).

Three types of needles (ID: N1 =  1.2 mm,  N2 =  1.6 mm,  N3 = 1.9 mm)

with lengths of 25 mm  were selected. The one-way valve func-

tion of the DrägerFabius anesthesia machine’s integrated air

circuit (Germany) was utilized and connected to  a simulated lung

(DrägerSelfTestLungTM,  Germany, compliance: 45 mL/cmH2O). A

gas-collecting plastic bag was utilized to collect exhalation flow,

and the gas volume was quantified using a  high-precision indus-

trial flowmeter (MF/FS4000, USA) (Fig. 1A).  Six distinct frequencies

(10, 14, 18, 22, 26, 30 min−1)  were examined under six  different DPs

(0.6, 0.8, 1.0, 1.2, 1.4, 1.6 bar). Each parameter setting was  replicated

five times per group.

SPSS version 26.0 and GraphPad Prism 9 software were

employed for statistical analyses and to facilitate the comparison

of findings. Upon maintaining a  consistent DP, a  significant differ-

ence (P < 0.05) was observed in both the MV and VT across three

needles at six frequencies (with the exception of DP =  1.6 bar, N2 vs.

N3, P > 0.05) (Fig. 1B and F). When operating at the same frequency,

both the MV and VT exhibited significant differences across three

needles at six DPs (P  < 0.05) (Fig. 1D and H). Multiple linear regres-

sion analysis revealed significant effects of DP, needle diameter,

and frequency on both  MV  and VT (P <  0.0001) (Fig. 1B and F).

Literature on jet ventilation commonly reported the use of

experimental jet needles with varying inner diameters, ranging

from 0.7 to 3 mm,  exhibiting considerable variability.7–9 Regard-

less of whether an adaptor for the jet ventilator or a  laryngoscope

equipped with jet ventilation capabilities is employed, the IDs of

the integrated jet needles are not  uniform.10–12 Whether utilizing

an adaptor for the jet ventilator or a  laryngoscope equipped with jet

ventilation is a  consistent challenge. Drawing from the simplified

Bernoulli equation for an ideal gas (P +  (1/2)�V2 = normal, where P

represents pressure, � denotes density, and V signifies velocity),

we observed that  a reduction in the ID of the injection needle cor-

relates with an increase in flow velocity, assuming a  normal DP –

consequently, a  smaller ID results in higher flow velocities.13 Apply-

ing Poiseuille’s law  (Q =  � × r4 × �p  (8�L)−1, where Q is  the volume

flowrate, r is  the radius of the pipe, �p  is the pressure difference,

� is  the fluid viscosity, and L is the length of the pipe), gas flow

is primarily dependent on the ID of the injection needle when the

DP and suction time are  normal.14 A  larger ID corresponds to an

increased gas flow. Therefore, variations in  the ID of the injection

needle, while holding other parameters normal, result in different

velocities and flow rates of ejected air, subsequently impacting ven-

tilation effectiveness in  a  simulated lung model. Previous studies

have suggested that a reduction in the ID of the jet needle correlates

with a decrease in  the VT under identical setting parameters.15 The

findings of the current study are consistent with those reported in

the literature.

For a given jet needle, we found that VT exhibited a  positive

correlation with DP and an inverse correlation with frequency.

Conversely, MV  demonstrated a positive correlation with both DP

and frequency. During the breathing cycle, a  shorter inspiratory

phase results in both a reduced jet-driven volume and a decreased

entrainment volume, leading to a lower VT. As the frequency esca-

lates, the inspiratory time correspondingly contracts. According to

the law of conservation of energy, the potential energy of  the air-

flow in each respiratory cycle decreases, evident in  a  decline in

VT. This phenomenon is  attributed to  the relationship between

frequency and the volume of gas delivered. While the volume of

gas administered per minute remains normal, increased frequency

results in a reduced volume of gas per breath. Consequently, the

entrained volume of gas decreases in  tandem with the volume per

respiratory cycle.

Upon reaching a  driving pressure of 1.6 bar, the VTs generated

by injection needles N2 and N3 both exhibited a  ceiling effect,

with no statistically significant difference observed in MV  (Table 1
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Fig. 1. Significant differences were observed in both the MV  and VT among the  three types of jet needles under identical parameter settings. (A) Schematic diagram of

experimental set-up. The  respiratory circuit diagram includes the following components, as indicated by  the legend: (A) the interface for the suction line; (B) the one-way

valve  for suction; (C) the one-way valve for expiration; and (D)  the exhaust outlet. (B–E) Perform a comparative analysis of minute ventilation in response to  varying drive

pressures and frequencies for the three needles. (F–I)  Perform a comparative analysis of tidal volume in response to varying drive pressures and frequencies for the three

needles.

and Fig. 1B). This outcome suggests that in  target lungs jet ven-

tilation, needles with larger diameters more readily approach the

physiological ventilation limit. Consequently, any further increase

in driving pressure may  result in  volumetric lung injury. When

employing a jet needle with a  larger ID and high DP to a normal

adult, accurately evaluating the MV and VT excursion visually can

become challenging for an anesthesiologist. Prolonged ventilation

with high VT has the potential to lead to ventilator-associated acute

lung injury (VILI) and hyperventilation.9 Consequently, vigilance

is  imperative in this regard. While obesity is often considered a
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Table  1

Comparison of Minute Volume (MV) and Tidal Volume (VT) Among Three Types of Jet Needles in  Jet Ventilation. The Applied Driving Pressure (DP) Ranged From 0.6 to  1.6 bar,

While the Frequency (F) Varied From 10 to 30 Cycles per Minute. Data are Presented as Mean ± Standard Deviation (n =  6).

MV (L) VT (mL)

N1
a,b N2

a,c N3
b,c N1

a,b N2
a,c N3

b,c

DP (bar)

0.6 3.321 ± (1.116)a,b 4.467 ± (1.475)a,c 5.417 ± (1.847)b,c 168.8 ± (10.0)a,b 227.0 ± (12.1)a,c 274.3 ± (11.5)b,c

0.8 4.179 ± (1.402)a,b 5.593 ± (1.876)a,c 7.364 ± (2.445)b,c 212.2 ± (11.5)a,b 284.2 ± (17.7)a,c 373.8 ± (18.3)b,c

1.0 5.048 ± (1.687)a,b 7.451 ± (2.213)a,c 11.076 ± (3.170)b,c 256.2 ± (12.8)a,b 382.7 ± (33.1)a,c 571.5 ± (57.4)b,c

1.2 6.129 ± (2.051)a,b 9.112 ± (2.988)a,c 13.490 ± (3.549)b,c 310.9 ±  (14.6)a,b 463.1 ± (24.3)a,c 700.5 ± (89.3)b,c

1.4 7.646 ± (2.450)a,b 12.321 ± (3.430)a,c 17.476 ± (5.002)b,c 389.7 ± (23.9)a,b 637.2 ± (68.6)a,c 900.1 ± (89.1)b,c

1.6 10.107 ± (2.850)a,b 15.723 ± (3.713)a,d 18.461 ± (5.622)b,d 521.7 ± (53.6)a,b 825.4 ± (130.0)a,c 944.8 ± (72.0)b,c

F (min−1)

10 3.396 ± (1.452)a,b 5.293 ± (2.678)a,c 6.844 ± (2.966)b,c 339.6 ± (145.2)a,b 529.3 ± (267.8)a,c 684.4 ± (296.6)b,c

14 4.535 ± (1.973)a,b 7.040 ± (3.687)a,c 9.512 ± (4.216)b,c 323.9 ± (140.9)a,b 502.8 ± (263.3)a,c 679.4 ± (301.2)b,c

18 5.658 ± (2.502)a,b 8.855 ± (4.670)a,c 11.703 ± (5.296)b,c 314.3 ± (139.0)a,b 491.9 ± (259.5)a,c 650.2 ± (294.1)b,c

22 6.727 ± (2.920)a,b 10.103 ± (4.734)a,c 13.669 ± (6.093)b,c 305.7 ±  (132.7)a,b 459.2 ± (215.2)a,c 621.3 ± (276.9)b,c

26 7.596 ± (2.963)a,b 11.181 ± (4.876)a,c 15.207 ± (6.497)b,c 292.1 ± (114.0)a,b 430.0 ± (187.5)a,c 584.9 ± (249.9)b,c

30 8.520 ± (3.138)a,b 12.195 ± (4.971)a,c 16.345 ± (6.673)b,c 284.0 ±  (104.6)a,b 406.5 ± (165.7)a,c 544.8 ± (222.4)b,c

a N1 vs. N2 , P < 0.05.
b N1 vs. N3 , P < 0.05.
c N2 vs. N3 , P < 0.05.
d N2 vs. N3 , P > 0.05.

relative contraindication for jet ventilation, certain studies have

reported successful use of high DP (4 bar) in obese patients

(BMI ≥ 30).16 This success may  be attributed to the increased DP

and resultant higher VT associated with jet ventilation.

The primary limitation of this study lies in  the inability of the

chosen simulated lung to  accurately replicate the airway resistance

of a real airway. Furthermore, the model lung volume and compli-

ance were fixed, and the needle was positioned vertically towards

the simulated airway opening. Actual jet ventilation is influenced

by a multitude of variables, including the angle and entry depth

of jet needle, airway obstruction, airway resistance, lung compli-

ance, and other physical factors. Future research needs to explore

the impact of these variables, such as jet needle angle, depth, and

airway obstruction, on ventilation efficiency. Further validation

through animal or clinical trials is  necessary.

Conclusion: In  the process of jet ventilation, driving pressure, the

jet needle’s inner diameter, and frequency are critical determinants

of minute ventilation and tidal volume. Notably, the jet needle’s

inner diameter, a significant variable, has frequently been under-

estimated in its contribution to ventilation efficacy. This element

necessitates additional research to confirm its importance.
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