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a b  s t  r a  c t

Introduction:  Early  diagnosis  of  lung cancer  (LC) is  crucial  to  improve  survival rates.  Radiomics models

hold  promise  for enhancing LC diagnosis.  This  study assesses  the impact  of integrating  a clinical and  a

radiomic  model  based  on deep learning  to predict  the  malignancy  of pulmonary  nodules  (PN).

Methodology:  Prospective  cross-sectional  study  of 97 PNs  from  93  patients. Clinical  data  included epi-

demiological  risk factors  and pulmonary  function  tests.  The  region  of  interest  of each  chest  CT  containing

the  PN was analysed. The  radiomic model  employed  a pre-trained  convolutional  network  to  extract visual

features. From these features, 500  with  a positive  standard  deviation were  chosen  as  inputs  for  an  opti-

mised neural  network.  The clinical  model was estimated  by  a logistic regression model  using clinical

data. The malignancy  probability from the  clinical  model  was  used  as  the  best  estimate of the pre-test

probability  of disease to update the malignancy  probability  of the  radiomic  model  using  a nomogram  for

Bayes’ theorem.

Results:  The radiomic  model had  a positive predictive  value  (PPV)  of 86%,  an accuracy  of 79% and an  AUC

of 0.67.  The clinical model identified DLCO, obstruction  index  and smoking  status  as  the  most  consis-

tent clinical predictors  associated  with  outcome. Integrating the  clinical features into  the  deep-learning

radiomic model  achieves  a PPV  of 94%,  an  accuracy  of 76% and  an AUC  of 0.80.

Conclusions: Incorporating  clinical  data  into a deep-learning  radiomic  model  improved  PN  malignancy

assessment,  boosting  predictive  performance.  This  study  supports  the  potential of combined  image-based

and  clinical  features  to improve  LC  diagnosis.

©  2024  SEPAR. Published by  Elsevier España,  S.L.U. All  rights  are  reserved,  including those for  text

and  data  mining,  AI training,  and similar  technologies.

Abbreviations: AI, artificial intelligence; AUC, area under the curve; LC, lung cancer; LCS, lung cancer screening; LDCT, low-dose computed tomography; PN, pulmonary

nodules; BMI, body mass index; COPD, chronic obstructive pulmonary disease; FVC, forced vital capacity; FEV1 , forced expiratory volume in one second; DLCO, diffusing

capacity for carbon monoxide; PPV,  positive predictive value; NPV, negative predictive value.
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Introduction

Lung cancer (LC) remains a  major health problem, causing

the highest mortality in  Europe and worldwide.1 These data are

explained by more than 70% of cases diagnosed at an advanced

stage with a low survival; therefore, early diagnosis is key because

early-stage treatment improves LC prognosis.2 Recently, a  shift has

been occurring due to  the increasingly expanded use of computed

tomography across various settings, leading to a rise in the num-

ber of incidentally detected pulmonary nodules (PN). On the other

hand, this shift is  also attributed to  the implementation of lung

cancer screening (LCS). In both cases, the outcome is early-stage

diagnosis. That’s how the 2022 American Cancer Society annual

report reveals a  decline in the incidence of advanced-stage cancer,

with a simultaneous annual increase of 4.5% in  a localised stage

primarily linked to  the initiation of LCS in the US a  decade ago.3

Despite the known advantages in reducing mortality due to

LCS,4–6 not all PN detected are  LC. In a  systematic review, 21% of

trial screens yielded a false positive result (range 1–42%) in  base-

line LDCT,6 requiring follow-up images or even biopsy. Thus, these

false positives can cause potential harm to  patients, and they can

generate high costs for health services.7–9 Similarly, they occur with

the increased incidental finding of PN, as many of these are benign

and require close follow-up, which is  similar to  the approach taken

with PN identified through LCS.10–13 In this context, whether the

PN is detected incidentally or through LCS, it is  crucial to identify

high-risk cases and rule out those with low risk.14,15

Fortunately, applying artificial intelligence (AI) techniques to

radiomics might make it possible to discriminate between benign

and malignant PN.16 Radiomics is an emerging area based on the

high-throughput mining of quantitative image features from medi-

cal images that allows data to  be  applied in clinical decision-making

to improve diagnostics and prognostics. It  is  mainly applied to can-

cer research.17,18 Image analysis with a  structured step workflow19

is used to extract complementary features from multiple views (the

shape, intensity and texture of features, among other things) which

encapsulate different aspects of the lesion. Machine learning is  a

subfield of AI that encompasses all approaches and allows comput-

ers to learn from various types of data. In contrast, deep learning

is part of machine learning based on multi-layered artificial neu-

ral networks to solve highly complex problems.20,21 This has been

applied in radiomics and is  used to model such multi-view features

to predict clinical outcomes.

The usefulness of radiomics in  the early diagnosis of LC is

promising.22,23 Although many of these studies yield favourable

outcomes, most are based solely on imaging data. Incorporating

clinical data related to LC can enhance these findings by  improv-

ing their application in daily clinical practice, yet there are still few

studies with this approach. Among these, Zhang et al., using ret-

rospective data, developed a  radiomic and deep learning model

to predict the malignancy of PN, achieving an AUC of 0.819 (95%

CI: 0.76–0.88).24 Employing a multi-omics approach could repre-

sent a significant advancement in applying AI  models to the clinical

prognosis of LC patients.25

The Radiolung project aims to design an algorithm based on

a radiomic signature that, associated with clinical data, can accu-

rately discriminate between LC and benign tumours.

Methods

Design and recruitment

Prospective, cross-sectional, comparative, and experimental

study investigating the radiomic signatures of malignant and

benign resected PNs, along with clinical risk factors. Recruitment

took place from December 2019 to September 2023 at a tertiary

care hospital. The inclusion criteria were patients aged 35–85

years-old with a  clearly identifiable PN detected incidentally by

chest CT or in LCS that qualified for surgery according to a  mul-

tidisciplinary tumour board. The exclusion criteria were a slice

thickness greater than 2.5  mm in the chest CT, a PN larger than 3 cm

in diameter, or lung metastasis. The patients underwent lobectomy,

segmentectomy, or atypical resection according to  thoracic surgery

criteria.

In each case, clinical and demographic were selected. Pre-

operative results of pulmonary function tests were obtained.

Pre-surgery chest CT images, PN characteristics, and the pathologi-

cal  results of the lung tissue obtained during surgery were collected.

This study was  performed in  accordance with the principles of

the Declaration of Helsinki. The research protocol was  approved

by the regional ethics committee (reference PI-19-169). All the

patients gave their written informed consent.

Image data acquisition

Patients underwent multislice chest CT scans using regu-

lar radiation or  low-dose radiation according to the protocols.

Most of these scans were performed without intravenous con-

trast. Images were acquired with a  GE  Revolution scanner

(General Electric Healthcare, Milwaukee, WI,  USA), a  SOMATOM

Drive (Siemens Healthineers AG, Forchheim, Germany) and a

Philips Incisive scanner (Philips Healthcare, Best, the Nether-

lands) equipped with 128 mm  × 0.625 mm,  128 mm × 0.6 mm and

64 mm  × 0.64 mm  detector collimation, respectively. They all used

automatic tube voltage and automatic tube current modulation.

Chest CT image reconstructions were performed on a  512  × 512

matrix using a high spatial frequency algorithm and thin slice thick-

ness applying the lung window setting (WW:  1600 and WL:  −600)

for the lung series. All chest CTs were interpreted by  thoracic radi-

ologists with over 10 years of experience.

The images were extracted from the picture archiving and

communication system (PACS) in the Digital Imaging and Commu-

nications in  Medicine (DICOM) format and were anonymized to

guarantee patient confidentiality. Subsequently, the anonymized

DICOMs were uploaded to  a  website hosted at the Autonomous Uni-

versity of Barcelona (UAB) for processing by the Computer Vision

Center (CVC) to construct the radiomic model.

Data analysis

The study analysis followed a three-step strategy. In  the first

step, a  radiomic prediction model was  fitted to estimate a PN’s

malignancy probability based on the chest CT image. In  the second

step, a clinical prediction model was  fitted to estimate a patient’s

malignancy probability based on their clinical profile. In the third

step, the malignancy probability predicted by the estimated clini-

cal  model was  used as the best estimate of the pretest probability

of disease to update the radiomic model’s node malignancy proba-

bility using a  nomogram for Bayes’ theorem.26

Deep radiomic model

An AI system designed to diagnose PN based on radiomic anal-

ysis of chest CT  scans has the three main steps sketched in Fig. 1

(pipeline). These steps have the following goals:

1.  Nodule detection. The first step is  to identify the position and

volumetric region (volume of interest, VOI) in the CT scan that

contain the lesion of interest.

2.  Nodule representation. Features are extracted by computing or

using intensity values from the volume (3D) or slices (2D) of
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Fig. 1. Overview of the steps involved in  the creation of the deep-radiomic model.
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the VOI, thereby characterising the visual appearance of nod-

ules. These features define a  crucial representation space for

the malignancy characterisation of the nodules. The represen-

tation space of nodules is  given by visual features describing

the content of textural volumes extracted from the inten-

sity VOI. The textural volumes are given by  3D GLCM (Grey

Level Co-occurrence Matrix) textural descriptors derived from

co-occurrence matrices.27 The visual features describing the

content of textural volumes are extracted using a  pre-trained

convolutional neural network and concatenated for each slice.

Finally, most discriminant features were the input to a fully con-

nected neural network for the classification of benign and malign

slices.

3. Nodule diagnosis. In this step, a  fully connected neural network

is trained to determine the values of the nodule representation

space that best discriminate malignancy. Furthermore, through-

out the nodule representation and diagnosis process, various

methods are used, with the potential to optimise their hyper-

parameters.

The probabilities of the deep radiomic model were calculated

using a nodule k-fold (K =  10) validation scheme in order to mitigate

overfitting of the deep learning approach.

For more implementation details of deep-radiomic model see

supplementary material.

Clinical model

A descriptive analysis of potential diagnostic factors for the diag-

nosis of PN malignancy was performed. The set of diagnostic factors

included age, sex, educational level, body mass index (BMI), smok-

ing status, living in an area with air pollution, family history of

cancer, personal history of cancer, chronic obstructive pulmonary

disease (COPD), and spirometric profile like forced vital capacity

(FVC), forced expiratory volume in one second (FEV1), diffusing

capacity for carbon monoxide (DLCO) and FEV1/FVC or obstruction

index.

To proceed with the selection of variables according to  the

Akaike information criterion (AIC criteria), the initial dataset was

bootstraped with repetition 2000 times,28 and a logistic regression

model was fit in each sample. Malignancy diagnosis (yes/no) was

used as the outcome. Variables that were retained in  more than

70% of the models were candidates for the final model. The non-

linear relationship between age and the log odd of the outcome

was assessed with no relevant results. The final set of variables

included in the model was then approved by a  pulmonologist with

more than 10 years of experience. Internal validation of the result-

ing model was performed on the whole cohort and was based on

discrimination, calibration, and bootstrap validation.29

Discrimination was assessed by estimating the area under

the receiver operating characteristic (ROC) curve (AUC). Calibra-

tion was assessed by the Brier score and graphically comparing

the  observed versus expected probabilities of malignancy diag-

noses by deciles of predicted risk. Due to  the imbalance in the

malignancy distribution a  precision recall curve was estimated

and used to complement the model performance analysis. Boot-

strap validation was performed to account for model overfitting

and correct for optimism the model performance on the devel-

opment data. Due to a lack of data, external validation was not

performed.

Integrative model – Bayes update

The Bayes theorem underlies the Fagan nomogram.26 This

method allowed us to update the probability that a patient had

a condition of interest given the probability that the subject had

the condition before the test was performed and the likelihood

ratio of the test. In our study, we used the probability of the

clinical model as the probability that the subject had the con-

dition before testing the PN, and the likelihood ratio of the test

was based on the deep radiomic model. The resulting probability,

using the Fagan nomogram, estimates the probability that the PN is

malignant based on the patient’s clinical probability and the deep

radiomic model test result. Therefore, given a positive result in the

radiomic model, the final probability of lung nodule malignancy

is  the malignancy clinical probability of the patient multiplied by

the positive likelihood ratio of the deep radiomic model. Given

a negative result in  the radiomic model, the final probability of

malignancy is  the malignancy clinical probability of the patient

multiplied by the negative likelihood ratio of the deep radiomic

model.

All analyses were conducted using Python and R  software ver-

sion 4.1.0.30

Results

Demographic and clinical data

The demographic and clinical characteristics of the patients are

presented in Table 1. The mean diameter of the PNs was 17.98 mm

(18.60 mm in  malignant, 15.76 mm  in  benign) with a median of

18.00 mm.  73 were malignant, and 20 were benign. In  terms of

the histological type of malignant PN, 57 were adenocarcinoma,

and 15 were squamous cell carcinoma. In benign PN, the majority

corresponded to  fibrosis/inflammation processes (80%), with less

frequency attributed to  infectious causes such as aspergillosis and

tuberculosis. In both benign and malignant nodules, over 50% were

located in the upper lobes. The flowchart of patients and PN is in

Fig.  2.

Deep radiomic model

This model includes data from 90 PN that met all  the technical

requirements for the analysis, 69 (77%) of which were malignant.

The sensitivity, specificity, positive predictive value (PPV), and neg-

ative predictive value (NPV) were 87% (95% CI:  0.77–0.94), 52%  (95%

CI: 0.30–0.74), 86% (95% CI: 0.75–0.93) and 55% (95% CI: 0.32–0.77),

respectively, with a  brier score 0.16 (95% CI: 0.1–0.23), accuracy of

79% (95% CI: 0.59–0.79) and AUC of 0.67 (95% CI: 0.51–0.83) (Fig. 3).

Clinical model

The model was carried out using the information of the 90

patients with complete cases (Fig. 4), 72 (80%) of  which pre-

sented a  malignant diagnosis. Based on the AIC and considering

only variables selected more than 50% of the estimated models in

the bootstrap samples, the optimal clinical model is  displayed in

Table 2.

In this clinical model, the sensitivity, specificity, PPV, and NPV

were 86% (95% CI:  0.76–0.93), 61% (95% CI: 0.36–0.83), 90%  (95% CI:

0.80–0.96) and 52% (95% CI: 0.30–0.74), respectively, with a brier

score 0.14 (95% CI: 0.10–0.19), accuracy of 81% (95% CI: 0.71–0.89)

and AUC of 0.71 (95% CI:  0.55–0.87)

Integrative model

The integrative model includes data from 89 PN that met  all

requirements for the radiomic and clinical model, 69 (78%) of which

presented a  malignant diagnosis. Integrating selected clinical fea-

tures into a  radiomic deep learning model exhibits a  sensitivity,

specificity, PPV and NPV of 74% (95% CI: 0.62–0.84), 85% (95% CI:

0.62–0.97), 94% (95% CI: 0.85–0.99) and 49% (95% CI:  0.31–0.66),

respectively. The brier score is 0.14 (95% CI: 0.09–0.19), the accu-

racy is  76% (95% CI:  0.66–0.85), and the AUC is 0.80 (95% CI:

4
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Table  1

Demographic and clinical characteristics of the patients.

Malignant

N =  73

Benign

N = 20

Total

N =  93

Age

Mean (SD) 69.22 (8.5)  65.91 (10.6) 68.50 (9.0)

Sex, n  (%)

Woman 23 (31.5%) 10 (50.0%) 33  (35.0%)

BMI

Mean  (SD) 27.41 (3.8)  27.18 (6.6) 27.36 (4.5)

Education, n (%)

College studies 4  (5.5%) 1 (5.0%) 5 (5.4%)

Post-high school training 31 (42.5%) 12 (60.0%) 43  (46.2%)

High  school or less 38 (52.0%) 7 (35.0%) 45  (48.4%)

Air  pollution, n (%)

Yes 17 (23.3%) 3 (15.0%) 20 (22.0%)

Smoking, n (%)

Never 8  (11.0%) 4 (20.0%) 12  (12.9%)

Current 28 (38.4%) 8 (40.0%) 36  (38.7%)

Former 37 (50.6%) 8 (40.0%) 45 (48.4%)

Pack year – index

Mean (SD) 39.1 (26.2) 27.6 (23.6) 42.1 (23.4)

Family history of cancer, n (%)

Yes 29 (39.7%) 8 (40.0%) 37  (39.8%)

Lung  cancer 13 (44.8%) 2 (25.0%) 15 (40.5%)

Others 16 (55.2%) 6 (75.0%) 22  (59.5%)

Personal history of cancer, n (%)

Yes  21 (28.8%) 5 (25.0%) 26  (28.0%)

COPD, n (%)

Yes 24 (32.9%) 5 (25.0%) 29 (31.2%)

FVC (%)

Mean (SD) 92.2 (18.4) 95.0 (17.0) 92.8 (18.0)

FEV1 (%)

Mean (SD) 84.4 (19.2) 88.5 (21.5) 85.3 (19.7)

Index (%)

Mean (SD) 72.7 (10.1) 77.5 (15.5) 73.7 (11.6)

DLCO (%)

Mean (SD) 76.6 (16.3) 83.2 (27.6) 77.9 (19.1)

Fig. 2. Flowchart of patients and PN.

0.67–0.92) (Fig. 5). Fig.  6 plots  the final predicted PN malignancy

by risk decile against the observed incidence of PN malignancy

in each decile. The convergence of the two curves indicates good

model calibration. The precision-recall curve (supplemental fig. 5)

rises sharply and plateaus at high precision with precision-recall

AUC of 0.91. This suggests that the estimated model can achieve

high precision (true positive rate) without sacrificing recall (sensi-

tivity).
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Fig. 3. ROC curve – deep radiomic model.

Fig. 4. Variables selected from the 2000 bootstrap model.

Discussion

Radiomics has revolutionised medical imaging, and there are

currently many working groups dedicated to this research in dif-

ferent fields.18,31 Other AI techniques, such as deep learning, allow

us to associate these radiomic characteristics with other data,

such as clinical information. Regarding this integrative approach,

few working groups are dedicated to  LC and PN diagnosis using

radiomics and clinical data together, and the retrospective study

by Lui et al.32 stands out. They conducted an analysis utilising 20

radiomic features, in addition to  age, gender, and PN location. Suc-

cessfully, they developed a  predictive model that achieved an AUC

of 0.81 (95% CI: 0.75–0.87). Similar results were published in 2023

by Lin et al.33 With a  similar approach, our study yields promis-

ing results, as the integration of selected clinical features with

radiomic image data based on deep learning techniques can formu-

late a  predictive model that significantly improve results compared

to relying solely on image analysis, achieving a  positive predic-

tive value of 94% (95% CI: 0.85–0.99) and an AUC of 0.80 (95% CI:

0.67–0.92). It is worth noting that the accuracy showed a  slight but

6
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Table  2

Optimal clinical model on  90 patients.

Optimal clinical model

Predictors ORa SEa 95% CIa p-Value

Index (per 10 units) 0.67 0.25 0.41–1.08 0.11

Smoking

Never  –  – –

Current 1.64 0.79 0.33–7.61 0.5

Former 3.37 0.78 0.69–15.8 0.12

DLCO  (per 10 units) 0.82 0.15 0.61–1.10 0.2

a OR = odds ratio, SE =  standard error, CI  =  confidence interval.

Fig. 5. ROC curve –  integrative model.

Fig. 6. Model predicted PN  malignancy against the observed incidence of PN malignancy by risk decile.

7
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non-significant decrease in  the integrative model, which could be

related to the imbalance in the number of benign and malignant

cases in our cohort.

Other studies such as Marmon et al.34 and Kammer et al.35 have

developed models based on blood biomarkers, clinical data, and

radiomics with favourable results. However, it is  important to note

that these studies use blood biomarkers that  are not specific to LC,

which may  add an additional cost without necessarily improving

performance compared to  models using only clinical and radiomic

data. Furthermore, technically, they use classic machine learning

hand-crafted features for radiomic descriptors without incorporat-

ing information from surrounding lung tissue. While these studies

are relevant, our research stands out for its innovative deep learning

approach and its ability to integrate multiple data sources.

Regarding validated predictive models based on clinical data,

there are those designed for incidental PN  such as the Mayo

model,36 while others focus on LCS such as the Brock model.37

Please see the comparative table in  the supplementary material.

We  have applied the Mayo model in our cohort and it exhibits sim-

ilar performance in terms of PPV of 88% (95% CI: 0.75–0.95), but

worst accuracy 63% (95% CI: 0.52–0.74), and AUC of 0.54 (95% CI:

0.36–0.72) (see supplemental material).

A strength of this study is  that it employs prospective patient

data for individuals who have undergone PN surgery, allowing

for the collection of clinical data, chest CT images and histology.

Another point to highlight is  the novelty of this exploratory study,

as it tests various clinical characteristics to identify the most rep-

resentative ones for association with a deep radiomic model. This

emphasizes the importance of integrating tools from daily medical

practice with new technologies to enable early cancer diagnosis.

Finally, we have compared our  model with a  conventional and

validated clinical model such as the Mayo model, allowing us to

demonstrate its validity in our cohort.

As for the limitations of this study, the most significant one

is the need to expand the number of cases to improve both the

clinical and radiomic models. Therefore, we are considering mak-

ing the next study multicentric in  the upcoming year to validate

our exploratory analysis. Another limitation is the low number of

benign cases, as these are real-life cases involving PN that have

undergone surgery, which are inherently more diagnostically chal-

lenging. On the flip side, this situation contributes to the model

training to detect suspicious malignancy cases of PN that ultimately

prove benign.

Radiomics and AI  models focused on  LC are  evolving across

different phases, encompassing aspects such as PN management,

diagnosis, treatment, and relapse of LC.38,39 Integrative models

with clinical data will be crucial to  optimise their effectiveness.

These advancements will positively impact patients, particularly in

managing PN, because these models will aid in  more accurately pre-

dicting the likelihood of malignancy, thereby avoiding unnecessary

follow-ups, biopsies or surgeries. This situation not only reduces

patient anxiety but also minimises potential harm, decreases wait-

ing lists and reduces healthcare system costs.

In conclusion, we  firmly believe that this integrative model,

combining clinical data and radiomics through deep learning, can

aid in diagnosing and managing PN. Although external validation

is necessary in a subsequent phase, in  the near future it may  be

directly useful in LCS programmes, thus optimising the early detec-

tion of LC and bringing technological advances closer to clinical

practice.
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