Journal Information
Vol. 37. Issue 4.
Pages 197-205 (April 2001)
Share
Share
Download PDF
More article options
Vol. 37. Issue 4.
Pages 197-205 (April 2001)
Full text access
Disfunción muscular esquelética de la EPOC. Mecanismos celulares
Visits
31994
A.G.N. Agustí
Corresponding author
aagusti@hsd.es

Correspondencia: Servei de Pneumologia. Hospital Universitari Son Dureta. Andrea Doria, 55. 07014 Palma de Mallorca.
, J. Sauleda
Servicio de Neumología Hospital Universitari Son Dureta. Palma de Mallorca
M. Morlá*, C. Miralles*, X. Busquets*
* Unidad de Investigación. Hospital Universitari Son Dureta. Palma de Mallorca
This item has received
Article information
Full text is only aviable in PDF
Bibliografía
[1.]
Statement of the American Thoracic Society and European Respiratory Society.
Skeletal muscle dysfunction in chronic obstructive pulmonary disease.
Ajrccm, 159 (1999), pp. S1-S40
[2.]
A.M.W.J. Schols, J. Slangen, L. Volovics, E.F.M. Wouters.
Weight loss is a reversible factor in the prognosis of chronic obstructive pulmonary disease.
Ajrccm, 157 (1998), pp. 1791-1797
[3.]
M.I. Cullen, M.A. Johnson, F.L. Mastaglia.
Pathological reactions of skeletal muscle.
Lord Watson of Detchant editores, Skeletal muscle pathology, pp. 123-184
[4.]
F.G.I. Jennekens.
Disuse, cachexia and aging.
Lord Walton of Detchant editores, Skeletal muscle pathology, pp. 753-768
[5.]
W.E. Mitch, A.L. Goldberg.
Mechanisms of muscle wasting. The role of the utiquitin-proteasome pathway.
N Engl J Med, 335 (1996), pp. 1897-1905
[6.]
R.M. Goldberg, C.L. Loprimzi.
Cancer anorexia/cachexia.
Palliative care and rehabilitation of cancer patients, pp. 31-41
[7.]
P.W. Emery.
Cachexia in experimental models.
Nutrition, 15 (1999), pp. 600-603
[8.]
J. Calles-Escandon, P. Felig.
Fuel-hormone metabolism during exercise and after physical training.
Clin Chest Med, 5 (1984), pp. 3-11
[9.]
D.L. DeVol, P. Rotwein, J.L. Sadow, J. Novakofski, P.J. Bechtel.
Activation of insuline-like growth factors gene expression during Work-induced skeletal muscle growth.
Am J Physiol, 259 (1990), pp. E89-E95
[10.]
A. Kamischke, D.E. Kemper, M.A. Castel, M. Luthke, C. Rolf, H. Behre, et al.
Testosterone levels in men with chronic obstructive pulmonary disease with or without glucocorticoid therapy.
Eur Respir R, 11 (1998), pp. 41-45
[11.]
W.P. Van Helder, K. Casey, R.C. Goode, W.M. Radomski.
Growth hormone regulation in two types of aerobic exercise of equal oxygen uptake.
Eur J Appl Physiol, 55 (1986), pp. 236-239
[12.]
W.P. Van Helder, K. Casey, W.M. Radomski.
Regulation of growth hormone during exercise by oxigen demand and availability.
Eur J Appl Physiol, 56 (1987), pp. 628-632
[13.]
X. Busquets, A.G.N. Agustí.
La biología molecular en el diagnóstico y tratamiento de las enfermedades respiratorias.
Arch Bronconeumol, 34 (1998), pp. 256-265
[14.]
P.T. Schumacker, N. Chandel, A.G.N. Agustí.
Oxygen conformance of cellular respiration in hepatocytes.
Am J Physiol, 265 (1993), pp. L395-L402
[15.]
P.W. Hochachka, L.T. Buck, S.C. Doll DJ Land.
Unifying theory of hypoxia toleran:ce: molecular metabolic defense and rescue mechanisms for suvrviving oxygen lack.
Proc Natl Acad Sci USA, 93 (1996), pp. 9493-9498
[16.]
S.C. Hand.
Quiescence in Artemia franciscana embryos: reversible arrest of metabolic and gene expression at low oxygen levels.
J Exp Biol, 201 (1998), pp. 1233-1242
[17.]
G. Kroemer, J.C. Reed.
Mitochondrial control of cell death.
Nature Med, 6 (2000), pp. 513-519
[18.]
J.S. Webb, D.J. Harrison, A.H. Wyllie.
Apoptosis: an overview of the process and its relevance in disease.
Apoptosis. Pharmacological implications and therapeutic opportunities, pp. 1-34
[19.]
M. Sandri, U. Carraro, M. Podhorska-Okolov, C. Rizzi, P. Arslan, D. Monti, et al.
Apoptosis, DNA damage and uibitiquin expression in normal and mdx muscle fibers after exercise.
FEBS Left, 373 (1995), pp. 291-295
[20.]
K.A. Meadows, J.M. Holly, C.E. Stewart.
Tumor necrosis factor-alpha- induced apoptosis is associated with suppression of insulinlike growth factor binding protein-5 secretion in differentiating murine skeletal myoblasts.
[21.]
E. Delpon, J. Tamargo.
Fisiología del músculo.
Fisiología humana, pp. 14-35
[22.]
A.G.N. Agustí, J. Cotes, P.D. Wagner.
Responses to exercise in lung diseases.
Eur Respir Mon, 6 (1998), pp. 32-50
[23.]
M.A. Van Baak, L.B. Borghouts.
Relationships with physical activity.
Nutr Rev, 58 (2000), pp. S16-S18
[24.]
G. Brevetti, M. Fanin, V. De Amicis, R. Carrozzo, F. Di Lello, V.D. Martone, et al.
Changes in skeletal muscle histology and metabolism in patients undergoing exercise deconditioning: effect of propionyl- L-carnitine.
Mucle Nerve, 20 (1997), pp. 1115-1120
[25.]
J.N. Gibson, D. Halliday, W.L. Morrison, P.J. Stoward, G.A. Hornsby, P.W. Watt, et al.
Decrease in human quadriceps muscle protein turnover consequent upon leg immobilization.
Clin Sci, 72 (1987), pp. 503-509
[26.]
J.A. Kent-Braun, A.V. Ng, K. Young.
Skeletal muscle contractile and noncontractile components in young and older women and men.
J Appl Physiol, 88 (2000), pp. 662-668
[27.]
R. Casaburi, A. Patessio, F. Ioli, S. Zanaboni, C.F. Donner, K. Wasserman.
Reductions in exercise lactic acidosis and ventilation as a result of exercise training in patients with obstructive lung disease.
Am Rev Respir Dis, 143 (1991), pp. 9-18
[28.]
R. Casaburi, J. Porszazs, M. Burns, E.R. Caithers, R.S.Y. Chang, C.B. Cooper.
Physiologic benefits of exercise training in rehabilitation of patients with severe chronic obstructive pulmonary disease.
Ajrccm, 155 (1997), pp. 1541-1551
[29.]
J. Roca, A.G.N. Agustí, A. Alonso, J.A. Barberá, R. Rodríguez-roisín, P.D. Wagner.
Effects of training on muscle O2 transport at VO2 max.
J Appl Physiol, 73 (1992), pp. 1067-1076
[30.]
E. Sala, J. Roca, R.M. Marrades, J. Alonso, J.M. Gónzalez de Suso, A. Moreno, et al.
Effects of endurance training on skeletal muscle bioenergetics in chronic obstructive pulmonary disease.
Ajrccm, (1999), pp. 1726-1734
[31.]
A.M.W.J. Schols, P.B. Soeters, A.M.C. Dingermans, R. Mostert, P.J. Frantzen, E.F.M. Wouters.
Prevalence and characteristics of nutritional depletion in patients with stable COPD eligible for pulmonary rehabilitation.
Am Rev Respir Dis, 147 (1993), pp. 1151-1156
[32.]
R.M. Palmer, M.G. Thompson.
Potential intracellular targets for anabolic/anticatabolic therapies.
Curr Opin Clin Nutr Metab Care, 2 (1999), pp. 213-218
[33.]
E.M. Baarends, A.M. Schols, K.R. Westerterp, E.F. Wouters.
Total daily energy expenditure. Relative to resting energy expenditure in clinically stable patients with COPD.
Thorax, 52 (1997), pp. 780-785
[34.]
A.M.W. Schols, P.B. Soeters, R. Mostert, W.H.M. Saris, E.F.M. Wouters.
Energy balance in chronic obstructive pulmonary disease.
Am Rev Respir Dis, 143 (1991), pp. 1248-1252
[35.]
I.M. Ferreira, D. Brooks, Y. Lacasse, R.S. Goldstein.
Nutritional support for individuals with COPD: a meta-analysis.
Chest, 117 (2000), pp. 672-678
[36.]
M.K. Sridhar.
Why do patients with emphysema lose weigh?.
Lancet, 345 (1995), pp. 1190-1191
[37.]
M.J. Rennie, R.H. Edwards, P.W. Emery, D. Halliday, K. Lundholm, D.J. Millward.
Depressed protein synthesis is the dominant characteristics of muscle wasting and cachexia.
Clin Physiol, 3 (1983), pp. 387-398
[38.]
G.C. Sieck, B.B. Johnson.
Metabolic and structural alterations in skeletal muscle with hypoxia.
Tissue oxygen respiration, pp. 779-827
[39.]
A.X. Bigard, H. Sánchez, O. Birot, B. Serrurier.
Myosin heavy chain composition of skeletal muscle in young rats growing under hypobaric hypoxia conditions.
J Appl Physiol, 88 (2000), pp. 479-486
[40.]
H.J. Green, J.R. Sutton, A. Cymerman, P.M. Young, C.S. Houston.
Operation Everest II: adaptations in human skeletal muscle.
J Appl Physiol, 66 (1989), pp. 2454-2461
[41.]
A.X. Bigard, A. Brunet, C.Y. Guezennec, H. Monod.
Skeletal mucle changes after endurance training at high altitude.
J Appl Physiol, (1991), pp. 2114-2121
[42.]
B. Wuyam, J.F. Payen, P. Levy, H. Bensaidane, H. Reutenauer, J.F. Le Bas, et al.
Metabolism and aerobic capacity of skeletal muscle in chronic respiratory failure related to chronic obstructive pulmonary disease.
Eur Respir J, 5 (1992), pp. 157-162
[43.]
R.L. Hughes, H. Katz, V. Sahgal, J.A. Campbell, R. Hartz, T.W. Shields.
Fiber size and energy metabolites in five separate muscle from patients with chronic obstructive lung disease.
Respiration, 44 (1983), pp. 321-328
[44.]
P. Jakobsson, L. Jorfeldt, A. Brundin.
Skeletal muscle metabolites and fibre types in patients with advancec chronic obstructive pulmonary disease (COPD), with and without chronic respiratory failure.
Eur Respir J, 3 (1990), pp. 192-196
[45.]
J. Sauleda, F. García-palmer, R.J. Wiesner, S. Tarraga, I. Harting, P. Tomas, et al.
Cytochrome oxidase activity and mitocondrial gene expression in skeletal muscle of patients with chronic obstructive pulmonary disease.
Ajrccm, 157 (1998), pp. 1413-1417
[46.]
E.E. Calle, M.J. Thun, J.M. Petrelli, C. Rodríguez, C.W. Heath.
Bodymass index and mortality in a prospective cohort os U.S. adults.
N Engl J Med, 341 (1999), pp. 1097-1105
[47.]
D.H. Bessesen, R. Faggioni.
Recently identified peptides involved in the regulation of body weight.
Semin Oncol, 2 (1998), pp. 28-32
[48.]
R. Casaburi.
Rationale for anabolic therapy to facilitate rehabilitation in obstructive pulmonary disease.
Baillieres Clin Endocrinol Metabol, 12 (1998), pp. 871-880
[49.]
M. Van Heek, D.S. Compton, C.F. France.
Diet-induced obese mice develop peripheral, but not central, resistance to leptin.
J Clin Invest, 99 (1997), pp. 385-390
[50.]
A.M. Schols, E.C. Creutzberg, W.A. Buurman, L.A. Campfield.
Plasma leptin is related to proinflammatory status and dietary intake in patients with chronic obstructive pulmonary disease.
Ajrccm, 160 (1999), pp. 1220-1226
[51.]
M. Rosenbaum, R.L. Leibel.
The role of leptin in human physiology.
N Engl J Med, 341 (1999), pp. 913-915
[52.]
N. Takabatake, H. Nakamura, S. Abe, T. Hino, H. Saito, H. Yuki, et al.
Circulating leptin in patients with chronic obstructive pulmonary disease.
Ajrccm, 159 (1999), pp. 1215-1219
[53.]
P.J. Barnes.
Chronic obstructive pulmonary disease.
N Engl J Med, 343 (2000), pp. 269-280
[54.]
A.G.N. Agustí, A. Noguera, J. Sauleda, C. Miralles, S. Batle, X. Busquets.
Systemic inflamation in chronic respiratory diseases.
Eur Respir Mon, (2000),
[55.]
I. Rahman, W. MacNee.
Role of oxidants/antioxidants in smokinginduced lung diseases.
Free Radic Biol Med, 21 (1996), pp. 669-681
[56.]
A.M.W.J. Schols, W.A. Buurman, A.J. Staal-Van den Brekel, M.A. Dentener, E.F.M. Wouters.
Evidence for a relation between metabolic derangements and increased levels of inflammatory mediators in a subgroup of patients with chronic obstructive pulmonary disease.
Thorax, 51 (1996), pp. 819-824
[57.]
M. Di Francia, D. Barbier, J.L. Mege, J. Orehek.
Tumor necrosis factor-alpha levels and weight loss in chronic obstructive pulmonary Disease.
Ajrccm, 150 (1994), pp. 1453-1455
[58.]
A. Noguera, X. Busquets, J. Sauleda, J.M. Villaverde, W. MacNee, A.G.N. Agustí.
Altered expression of adhesion molecules and Gproteins in circulating neutrophils in COPD.
Ajrccm, 158 (1998), pp. 1664-1668
[59.]
J. Sauleda, F.J. García-palmer, G. González, A. Palou, A.G. Agustí.
The activity of cytochrome oxidase is increased in circulating lymphocytes patients with chronic obstructive pulmonary disease, asthma, and chromic arthritis.
Ajrccm, 161 (2000), pp. 32-35
[60.]
N.J. Espat, E.M. Copeland, L.L. Moldawer.
Tumor necrosis factor and cachexia: a current perspective.
Surg Oncol, 3 (1994), pp. 255-262
[61.]
S. Ahmad, M.D. Karlstad, M.A. Choudhry, M.M. Sayeed.
Sepsis-induced myofibrillar protein catabolism in rat skeletal muscle.
Life Sci, 55 (1994), pp. 1383-1391
[62.]
Y. Li, R.J. Schwartz, I.A. Waddell, B.R. Holloway, M.B. Reid.
Skeletal muscle myocytes undergo protein loss and reactive oxygenmediated NF-?ÈB activation in response to tumor necrosis factor ?¿.
Faseb J, 122 (1998), pp. 871-880
[63.]
R. Medina, S.S. Wing, A.C. Goldberg.
Increase in levels of polyubiquitin and proteasome mRNA in skeletal muscle during starvation and denervation atrophy.
Biochem J, 307 (1995), pp. 631-637
[64.]
W.E. Mitch, R. Medina, S. Grieber, R.C. May, B.K. England, S.R. Price, et al.
Metabolic acidosis stimulates muscle protein degradation by activating the adenosine triphosphate-dependent pathway involving ubiquitin and proteasomes.
J Clin Invest, 93 (1994), pp. 2127-2133
[65.]
I. Rahman, D. Morrison, K. Donaldson, W. MacNee.
Systemic oxidative stress in basthma, COPD, and smokers.
Ajrccm, 154 (1996), pp. 1055-1060
[66.]
R.A. Rabinovich, E. Ardite, J. Vilaro, A. Capitan, J.C. Fernandez-Checa, J. Roca.
Limb muscle glutathione status after endurance training in COPD patients.
Ajrccm, 161 (2000), pp. A753
[67.]
J.E. Repine, A. Bast, I. Lankhorst.
Oxidative stress in chronic obstructive pulmonary disease.
Ajrccm, 156 (1997), pp. 341-357
[68.]
K. Schulze-Osthoff, A.C. Bakker, B. Vanhaesebroeck, R. Beyaert, W.A. Jacob, Fiers.
Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial function. Evidence for the involvement of mithocondrial radical generation.
J Biol Chem, 267 (1992), pp. 5317-5323
[69.]
P.K. Jensen.
Antimycin insensitive oxidation of succinate and NADPH in electron transport particles I. pH dependency and hydrogen peroxide formation.
Biochim Biophys Acta, 122 (1966), pp. 157-166
[70.]
M.B. Reid, K.e. Haack, K.M. Franchek, P.A. Valberg, L. Kobzik, M.S. West.
Reactive oxygen in skeletal muscle. I. Intracellular oxidant kinetics and fatigue in vitro.
J Appl Physiol, 73 (1992), pp. 1797-1804
[71.]
M.B. Reid, T. Shoji, M.R. Moody, M.L. Entman.
Reactive oxygen in skeletal muscle II. Extraellular release of free radicals.
J Appl Physiol, 73 (1992), pp. 1805-1809
[72.]
B. Sjodin, Y.H. Westing, F.S. Appel.
Biochemical mechanims for oxygen free radical formation during exercise.
Sports Med, 10 (1990), pp. 236-254
[73.]
O. Choudhury, S. Sakaguchi, K. Koyano, A.F.M. Martin, H. Muro.
Free radical injury in skeletal muscle ischemia and reperfusion.
J Surg Res, 1 (1991), pp. 392-398
[74.]
O. Reikeras, K. Ytrehus.
Oxygen radicals scavenger enzymes in ischaemia-reperfusion injury of skeletal muscle.
Scand J Clin Lab Invest, 52 (1992), pp. 113-118
[75.]
S. Moncada, A. Higgs.
The L-arginine-nitric oxide pathway.
N Engl J Med, 329 (1993), pp. 2002-2012
[76.]
M. Nakane, H.H. Schmidt, J.S. Pollock, U. Forsterman, F. Murad.
Cloned human brain nitric oxide synthase is highly expressed in skeletal muscle.
FEBS Lett, 316 (1993), pp. 175-180
[77.]
L. Kobzik, M.B. Reid, D.S. Bredt, J.S. Stamler.
Nitric oxide in skeletal muscle.
Nature, 372 (1994), pp. 546-548
[78.]
U. Frandsen, M. Lopez-Figueroa, Y. Hellsten.
Localization of nitric oxide synthase in human skeletal muscle.
Biochem Biophys Res Commun, 227 (1996), pp. 88-93
[79.]
M.B. Reid.
Role of nitric oxide in skeletal muscle: synthesis, distribution and functional importance.
Acta Physiol Scand, 162 (1998), pp. 401-409
[80.]
C. Miralles, X. Busquets, C. Santos, B. Togores, S. Hussain, I. Rahman.
Regulation of iNOS expression and glutathione levels in rat liver by oxygen tension.
FEBS Lett, 476 (2000), pp. 253-257
[81.]
L.L. Ji, F.W. Stratman, H.A. Lardy.
Enzymatic down regulation with exercise in rat skeletal muscle.
Arch Biochem Biophys, 263 (1988), pp. 137-149
[82.]
F. Whittom, J. Jobin, P. Simard, P. Leblanc, C. Simard, S. Bernard.
Histochemical and morphological characteristics of the vastus lateralis muscle in patients with chronic obstructive pulmonary disease.
Med Sci Sports Exerc, 30 (1998), pp. 1467-1474
[83.]
H.F. Gilbert.
Biological disulfides: the third messenger? Modulation of phosphofructose kinase activity by the thiol/disulfide exchange.
J Biol Chem, 257 (1982), pp. 12086-12091
[84.]
M. Solary, L. Dubrez, B. Eymin.
The role of apoptosis in the pathogenesis and treatment of diseases.
Eur Respir J, 9 (1996), pp. 1293-1305
[85.]
R.S. Hotchkiss, P.E. Swanson, B.D. Freeman, K.W. Tinsley, J.P. Cobb, G.M. Matuschak, et al.
Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction.
Crit Care Med, 27 (1999), pp. 1230-1251
[86.]
V. Adams, H. Jiang, J. Yu, S. Mobius-Winkler, E. Fiehn, A. Linke, et al.
Apoptosis in skeletal myocytes of patients with chronic heart failure is associated with exercise intolerance.
J Am Coll Cardiol, 33 (1999), pp. 959-965
[87.]
A.G.N. Agusti, J. Sauleda, S. Batlle, C. Miralles, C. Gomez, B. Togores, et al.
Skeletal muscle apoptosis in COPD.
Eur Respir J, 16 (2000), pp. 575
[88.]
S. Ebashi, M. Endo.
Calcium ion and muscle contraction.
Prog Biophys Mol Biol, 18 (1968), pp. 123-183
[89.]
E. Fiaccadori, E. Coffrini, C. Fracchia, C. Rampulla, T. Montagana, A. Borghetti.
Hypophosphatemia and phosphorus depletion in respiratory and peripheral muscles of patients with respiratory failure due to COPD.
Chest, 105 (1994), pp. 1392-1398
[90.]
D.W. Molloy, S. Dhingra, F. Solven, A. Willson, D.S. McCarthy.
Hypomagnesemia and respiratory muscle power.
Am Rev Respir Dis, 129 (1984), pp. 497-498
[91.]
R.S. Brown.
Potassium homeostasis and clinical implications.
Am J Med, 77 (1984), pp. 3-9
[92.]
A. Cucina, P. Sapienza, V. Corvino, V. Borrelli, V. Mariani, B. Randone, et al.
Nicotine-induced smooth muscle cell proliferation is mediated through bFGF and TGF-beta 1.
Surgery, 127 (2000), pp. 316-322
[93.]
J. Rincon, D. Galuska, J.W. Ryder, Y. Kawano, H. Wallberg-Henriksson, J.W. Gorrod, et al.
Effect of the nicotine metabolite 5?f-hydroxycotidine on glucose transport and glycogen synthase activity in rat skeletal muscle.
Pfugers Arch, 439 (1999), pp. 130-133
[94.]
P. Broal.
Main features of structure and function.
The central nervous system. Estructure and function, pp. 5-50
[95.]
D.S. Celermajer, M.R. Adams, P. Clarkson, J. Robinson, R. McCredie, A. Donald, et al.
Passive smoking and impaired endotheliumdependent arterial dilatation in healthy young adults.
N Engl J Med, 334 (1996), pp. 150-154
[96.]
P. Amoroso, S.R. Wilson, J. Moxham, J. Ponte.
acute effects of inhaled salbutamol on the metabolic rate of normal subjects.
Thorax, 48 (1993), pp. 882-885
[97.]
M. Decramer, L.M. Lacquet, R. Fagard, P. Rogiers.
Corticosteroids contribute to muscle wealness in chronic airflow obstruction.
Ajrccm, 150 (1994), pp. 11-16
[98.]
S. Nava, G. Gayan-ramirez, H. Rollier, A. Bisschop, R. Dom, V. De Bock, et al.
Effects of acute steroid administration on ventilatory and peripheral muscles in rats.
Ajrccm, 153 (1996), pp. 1888-1896
[99.]
P.N. Dekhuijzen, G. Gayan-ramirez, A. Bisschop, V. de Bock, R. Dom, M. Decramer.
Corticosteroid treatment and nutritional deprivation cause a different pattern of atrophy in rat diaphragm.
J Appl Physiol, 78 (1995), pp. 629-637
[100.]
A.B. Evans, A.J. Al-Himyari, M.I. Hrovat, P. Pappagianopoulos, J.C. Wain, L.C. Ginns, et al.
Abnormal skeletal muscle oxidative capacity after lung transplantation by P-MRS.
Ajrccm, 155 (1997), pp. 615-621
[101.]
J.F. Hokanson, J.R. Mercier, G.A. Brooks.
Cyclosporin A decreases rat skeletal muscle respiration in vitro.
Ajrccm, 151 (1995), pp. 1849-1851
[102.]
L.J. Baier, P.A. Permana, X. Yang, R.E. Pratley, R.L. Hanson, C.Q. Shen, et al.
A calpain-10 gene polymorphism is assocaited with reduced muscle mRNA levels and insulin resistance.
J Clin Invest, 106 (2000), pp. R69-R73
[103.]
M.L. Hribal, M. Federici, O. Porczio, D. Lauro, P. Bordoni, D. Accili, et al.
The Gly-Arg972 aminoacid polymorphism in insulin receptor substrate affects glucose metabolism in skeletal muscle cells.
J Clin Endocrinol Metab, 85 (2000), pp. 2004-2013
[104.]
A.G. Williams, M.P. Rayson, M. Jubb, M. World, D.R. Woods, M. Hayward, et al.
The ACE gene and muscle performance.
Nature, 403 (2000), pp. 614
[105.]
R.J. Van Suylen, E.F. Woulters, H.J. Pennigns, et al.
The DD genotype of the anngiotensin converting enzyme gene is negatively associated with right ventricular hypertrophy in male patients with chronic obstructive pulmonary disease.
Ajrccm, 159 (1999), pp. 1791-1795
[106.]
D.C. Guttridge, M.W. Mayo, L.V. Madrid, et al.
NF-kappaB-induced loss of MyoD messenger RNA: possible role in muscle decay and cachexia.
Science, 289 (2000), pp. 2363-2366
[107.]
G.E.O. Muscat, U. Dressel.
Not a minute to waste.
Nature Med, 11 (2000), pp. 1216-1217
Copyright © 2001. Sociedad Española de Neumología y Cirugía Torácica
Archivos de Bronconeumología
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?