Journal Information
Vol. 46. Issue 3.
Pages 116-121 (March 2010)
Share
Share
Download PDF
More article options
Vol. 46. Issue 3.
Pages 116-121 (March 2010)
Original Article
Full text access
Variability of Pulse Signal Frequency Obtained Using Nocturnal Pulse Oximetry in Patients with Sleep Apnoea/Hypoapnoea Syndrome
Variabilidad de la señal de frecuencia de pulso obtenida mediante pulsioximetría nocturna en pacientes con síndrome de apnea hipopnea del sueño
Visits
4862
Félix del Campo Matíaa,
Corresponding author
fsas@telefonica.net

Corresponding author.
, Roberto Hornero Sánchezb, Carlos Zamarrón Sanzc, Daniel Álvarez Gonzálezb, J. Víctor Marcos Martínb
a Servicio de Neumología, Hospital Universitario del Río Hortega, Valladolid, Spain
b ETSI-Telecomunicación, Universidad de Valladolid, Valladolid, Spain
c Servicio de Neumología, Hospital Clínico Universitario, Santiago de Compostela, Spain
This item has received
Article information
Abstract
Introduction

The measurement of central tendency (MCT) is a non-linear analysis technique which applied to second order differences diagrams enables the degree of variability to be quantified in a data series. In the present study an attempt is made to quantify and characterise the changes in heart rate obtained by pulse oximetry in patients with a clinical suspicion of sleep apnoea/hypoapnoea syndrome (SAHS) using the MCT and to evaluate its diagnostic use.

Patients and Methods

A total of 187 patients were included in the study, on whom a nocturnal polysomnographic and pulse oximetry study was performed. To evaluate the variability of the heart rate the MCT applied to graphs of second order differences obtained from the heart rate record.

Result

Patients with SAHS had a higher heart rate variablity than patients without SAHS (0.449 vs 0.666, P<.001). In the multivariate analysis, the heart rate, the minimum saturation and the desaturation index of 4% were independently associated with the heart rate variability. As a diagnostic method, the MCT of the heart rate gives a sensitivity of 69.3%, a specificity of 77.6% and a diagnostic precision of 72.7%.

Conclusions

Patients with SAHS have a greater variabilityin heart rate during the night, evaluated by applying the MCT of the heart rate to diagrams of second order differences. As a screening method, the MCT applied to the heart rate has a moderate sensitivity and specificity.

Keywords:
Sleep apnoea syndrome
Measurement of central tendency
Heart rate
Diagnosis
Resumen
Introducción

La medida de tendencia central (MTC) es una técnica de análisis no lineal que aplicada a diagramas de diferencias de segundo orden permite cuantificar el grado de variabilidad de una serie de datos. En el presente estudio, se pretende cuantificar y caracterizar las modificaciones de la frecuencia cardiaca obtenidas por pulsioximetría en pacientes con sospecha clínica de síndrome de apnea hipopnea del sueño (SAHS) mediante la utilización de la MTC y valorar su utilidad diagnóstica.

Pacientes y métodos

Se incluyen en el estudio 187 pacientes, realizándose un estudio polisomnográfico y pulsioximétrico nocturno. Para la valoración de la variabilidad de la frecuencia cardiaca, se utilizó la MTC aplicada a gráficos de diferencias de segundo orden obtenidos del registro de la frecuencia cardiaca.

Resultados

Los pacientes con SAHS presentaron una mayor variabilidad de la frecuencia cardiaca que los pacientes sin SAHS (0,449 vs. 0,666, p<0,001). En el análisis multivariante, la frecuencia cardiaca, la saturación mínima y el índice de desaturación del 4% presentaron una relación independiente con la variabilidad de la frecuencia cardiaca. Como método diagnóstico, la MTC de la frecuencia cardiaca proporcionó una sensibilidad de 69,3%, una especificidad de 77,6% y una precisión diagnóstica de 72,7%.

Conclusiones

Los pacientes con SAHS presentan durante la noche una mayor variabilidad de la frecuencia cardiaca, valorada mediante la aplicación de la medida de tendencia central a diagramas de diferencias de segundo orden de la frecuencia cardiaca. Como método de despistaje, la MTC aplicada a la frecuencia cardiaca presenta una sensibilidad y especificidad moderada.

Palabras clave:
Síndrome de apnea del sueño
Medida de tendencia central
Frecuencia cardiaca
Diagnóstico
Full text is only aviable in PDF
References
[1.]
P. Palatini, E. Casiglia, S. Julius, A.C. Pessina.
High heart rate: a risk factor for cardiovascular death in elderly men.
Arch Intern Med, 159 (1999), pp. 585-592
[2.]
P. Greenland, M.L. Daviglus, A.R. Dyer, K. Liu, C.F. Huang, J.J. Goldberger, et al.
Resting heart rate is a risk factor for cardiovascular and noncardiovascular mortality: the Chicago Heart Association Detection Project in Industry.
Am J Epidemiol, 149 (1999), pp. 853-862
[3.]
A. Reunanen.
Heart rate and mortality.
J Intern Med, 247 (2000), pp. 231-239
[4.]
C. Guilleminault, S. Connoly, R. Winkle, K. Melvin, A. Tilkian.
Cyclical variation of the heart rate in sleep apnea syndrome.
Lancet, 21 (1984), pp. 126-131
[5.]
S. Andreas, G. Hajak, B Von Breska, E. Rüther, H. Kreuzer.
Changes in heart rate during obstructive sleep apnea.
Eur Respir J, 7 (1992), pp. 853-857
[6.]
M.R. Bonsignore, S. Romano, O. Marrone, M. Chiodi, G. Bonsignore.
Different heart rate patterns in obstructive apneas during NREM sleep.
Sleep, 20 (1997), pp. 1167-1174
[7.]
F. Roche, J.M. Gaspoz, I. Court-Fortune, P. Minini, V. Pichot, D. Duverney, et al.
Screening of obstructive sleep apnea syndrome by heart rate variability analysis.
Circulation, 100 (1999), pp. 1411-1415
[8.]
C. Keyl, P. Lemberger, M. Pfeifer, K. Hochmuth, P. Geisler.
Herat rate variability in patients with daytime sleepiness suspected of having sleep apnea syndrome: a receiver-operating characteristics analysis.
Clin Sci (Lond), 92 (1997), pp. 335-343
[9.]
M.F. Hilton, R.A. Bates, K.R. Godfrey, M.J. Chappell, R.M. Cayton.
Evaluation of frequency and time-frequency spectral analysis of heart rate variability as a diagnostic marker of the sleep apnoea syndrome.
Med Biol Eng Comput, 37 (1999), pp. 760-769
[10.]
C. Zamarrón, P.V. Romero, F. Gude, A. Amaro, J.R. Rodriguez.
Screening of obstructive sleep apnoea: heart rate spectral analysis of nocturnal pulse oximetric recording.
Respir Med, 95 (2001), pp. 759-765
[11.]
C. Zamarrón, F. Gude, J. Barcala, J.R. Rodriguez, P.V. Romero.
Utility of oxygen saturation and heart rate spectral analysis obtained from pulse oximetric recordings in the diagnosis of sleep apnea syndrome.
Chest, 123 (2003), pp. 1567-1576
[12.]
C. Zamarrón, R. Hornero, F. del Campo, D. Abásolo, D. Alvarez.
Heart rate regularity analysis obtained from pulse oximetric recordings in the diagnosis of obstructive sleep apnea.
Sleep Breath, 10 (2006), pp. 83-89
[13.]
M.E. Cohen, D.L. Hudson, P.C. Deedwania.
Appling contiunuous chaotic modeling to cardiac signal analysis.
IEEE Eng Med Biol Mag, 15 (1996), pp. 97-102
[14.]
Reschtschaffen A, Kales A. A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. Washington DC, US Government-Printing Office, 1979; National Institutes of Health Publication No 204.
[15.]
J. Haba-Rubio, G. Darbellay, F.R. Herrmann, J.G. Frey, A. Fernández, J.M. Vesin, et al.
Obstructive sleep apnea syndrome: effect of respiratory events and arousal on pulse wave amplitude measured by photoplethysmography in NREM sleep.
Sleep Breath, 9 (2005), pp. 73-81
[16.]
L.J. Findley, G.A. Farkas, D.F. Rochester.
Changes in heart rate during breathing interrupted by recurrent apneas in humans.
J Appl Physiol, 59 (1985), pp. 536-542
[17.]
C. Zwillich, T. Devlin, D. White, N. Douglas, J. Weil, R. Martin.
Bradycardia during sleep apnea. Characteristics and mechanism.
J Clin Invest, 69 (1982), pp. 1286-1292
[18.]
C. Guillemiault, D. Poyares, A. Rosa, Y.S. Huang.
Heart rate variability, sympathetic and vagal balance and EEG arousals in upper airway resistance and mild obstructive sleep apnea syndromes.
Sleep Med, 6 (2005), pp. 451-457
[19.]
K. Sumi, K. Chin, K. Takahashi, T. Nakamura, H. Matsumoto, A. Niimi, et al.
Effect of nCPAP therapy on heart rate in patients with obstructive sleep apnoea-hypopnoea.
QJM, 99 (2006), pp. 545-553
[20.]
C. Zamarrón, F. Pichel, P.V. Romero.
Coherence between oxygen saturation and heart rate obtained from pulse oximetric recordings in obstructive sleep apnoea.
Physiol Meas, 26 (2005), pp. 799-810
[21.]
D. Alvarez, R. Hornero, M. García, F. del Campo, M. López, C. Zamarrón.
Applying cross approximate entropy to blood oxygen saturation and heart rate from nocturnal oxymetry in screening for obstructive sleep apnea.
Encyclopedia of healthcare Informatión Systems, pp. 74-83
[22.]
M.L. Alonso, J. Terán, J. Cordero, M. González, L. Rodríguez, J.L. Viejo, et al.
Fiabilidad de la poligrafía respiratoria domiciliaria para el diagnóstico del syndrome de apneas hipopneas durante el sueño. Análisis de costes.
Arch Bronconeumol, 44 (2008), pp. 22-28
[23.]
A. Camarasa, D. Gonzalez, J.C. Serrano, F. Barbé.
El síndrome de apnea hipopnea en 2009.
Arch Bronconeumolo, 45 (2009), pp. 14-21
[24.]
H. Adachi, A. Mikami, T. Kumano-go, N. Suganuma, H. Matsumoto, Y. Shigedo, et al.
Clinical significance of pulse rate rise during sleep as a screening marker for the assessment of sleep fragmentation in sleep-disordered breathing.
Sleep Med, 4 (2003), pp. 537-542
[25.]
T. Penzel, J. McNames, P. de Chazal, B. Raymond, A. Murria, G. Moody.
Systematic comparison of different algorithms for apnoea detection based on electrocardiogram recordings.
Med Biol Eng Comput, 40 (2002), pp. 402-407
[26.]
D. Alvarez, R. Hornero, D. Abasolo, F. del Campo, C. Zamarrón.
Nonlinear characteristics of blood oxygen saturation from nocturnal oximetry for obstructive sleep apnoea detection.
Physiol Meas, 27 (2006), pp. 399-412
[27.]
F. del Campo, R. Hornero, C. Zamarrón, D. Abasolo, D. Alvared.
Oxygen saturation regularity analysis in the diagnosis of obstructive sleep apnea.
Artif Intell Med, 37 (2006), pp. 111-118
[28.]
D.L. Hudson, M.E. Cohen, P.C. Deedwania.
Chaotic ECG analysis using combined models.
IEEE Eng. Med Biol, 20 (1998), pp. 1553-1556
[29.]
D.L. Hudson, M.E. Cohen.
Pattern identification in electroencephalograms.
ISCA Comput. Their Applicat, 17 (2002), pp. 315-318
[30.]
D. Abasolo, R. Hornero, C. Gomez, M. García, M. Lopez.
Analysis of EEG background activity in Alzheimer's disease patients with Lempel-Ziv complexity and central tendency measure.
Medical engineering & physics, 28 (2006), pp. 315-322
[31.]
D. Alvarez, R. Hornero, M. García, F. del Campo, C. Zamarrón.
Improving diagnostic ability of blood oxygen saturation from overnight pulse oximetry in obstructive sleep apnea detection by means of central tendency measure.
Artif Intell Med, 41 (2007), pp. 13-24
[32.]
Y. Iyriboz, S. Powers, J. Morrow, D. Ayers, G. Landry.
Accuracy of pulse oximeters in estimating heart rate at rest and during exercise.
Br J Sports Med, 25 (1991), pp. 162-164
[33.]
C. Constant, D. Laude, I. Murat, J.L. Elghozi.
Pulse rate variability is not a surrogate for heart rate variability.
Clinical Science, 97 (1999), pp. 391-397
Copyright © 2010. Sociedad Española de Neumología y Cirugía Torácica
Archivos de Bronconeumología
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?