Journal Information
Vol. 42. Issue 2.
Pages 62-67 (February 2006)
Share
Share
Download PDF
More article options
Vol. 42. Issue 2.
Pages 62-67 (February 2006)
Original Articles
Full text access
Response of Tidal Volume to Inspiratory Time Ratio During Incremental Exercise
Visits
7585
P.J. Benitoa,
Corresponding author
pedroj.benito@upm.es

Correspondence: Dr. P.J. Benito-Peinado. Facultad de Ciencias de la Educación Física y del Deporte (INEF). Universidad Politécnica de Madrid. Martín Fierro, s/n. 28040 Madrid. España
, F.J. Calderóna, A. García-Zapicob, J.C. Legidoc, J.A. Caballerod
a Facultad de Ciencias de la Educación Física y del Deporte (INEF), Universidad Politécnica de Madrid, Madrid, Spain
b Facultad de Educación, Universidad Complutense de Madrid, Madrid, Spain
c Escuela Profesional de Especialistas en Medicina de la Educación Física y del Deporte, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
d Facultad de Ciencias de la Actividad Física y el Deporte, Las Palmas de Gran Canaria, Las Palmas, Spain
This item has received
Article information
Objective

There is some debate about the participation of the Hering-Breuer reflex during exercise in human beings. This study aimed to investigate breathing pattern response during an incremental exercise test with a cycle ergometer. Participation of the Hering-Breuer reflex in the control of breathing was to be indirectly investigated by analyzing the ratio of tidal volume (VT) to inspiratory time (tI).

Subjects and methods

The 9 active subjects who participated the study followed an incremental protocol on a cycle ergometer until peak criteria were reached. During exercise, VT/tI can be described in 2 phases, separated by activation of the Hering-Breuer reflex (inspiratory off-switch threshold). In phase 1, ventilation increases because VT increases, resulting in a slight decrease in TI, whereas, in phase 2, increased ventilation is due to both an increase in VT and a decrease in tI.

Results

The mean (SD) inspiratory off-switch threshold was 84.6% (6.3%) when expressed relative to peak VT (mean, 3065 [566.8] mL) and 48% (7.2%) relative to the forced vital capacity measured by resting spirometry. The inspiratory off-switch threshold correlated positively (r=0.93) with the second ventilatory threshold, or respiratory compensation point.

Conclusions

The inspiratory off-switch threshold and VT are directly related to one another. The inspiratory off-switch threshold was related to the second ventilatory threshold, suggesting that the Hering-Breuer reflex participates in control of the breathing pattern during exercise. Activation of the reflex could contribute by signaling the respiratory centers to change the breathing pattern.

Key words:
Breathing pattern
Hering-Breuer reflex
Ventilatory threshold
Objetivo

La participación del reflejo de Hering-Breuer durante el ejercicio en seres humanos es objeto de discusión. El propósito del presente trabajo ha sido estudiar la respuesta del patrón respiratorio durante un esfuerzo incremental en cicloergómetro para comprobar, de forma indirecta, mediante el análisis de la relación volumen corriente-tiempo inspiratorio (VT/tI), la participación del reflejo de Hering-Breuer en el control de la respiración.

Sujetos y métodos

Han participado en el estudio 9 sujetos activos que han llevado a cabo un protocolo incremental en cicloergómetro hasta alcanzar criterios máximos. Se ha comprobado que la relación VT/tI durante el ejercicio pre-senta 2 fases con un punto de ruptura, denominado punto de ruptura Hering-Breuer (PHB): fase I, donde el incremen-to de la ventilación se produce a expensas del aumento del Vt con ligero descenso del tI, y fase II, durante la cual el incremento ventilatorio se produce tanto por el aumento del Vtcomo por el descenso del tI.

Resultados

En el estudio, el PHB se alcanzaba a un valor medio (± desviación estándar) del 84,6 ± 6,3% respecto al máximo valor de VT (3.065 ± 566,8 ml) y de un 48 ± 7,2% respecto al valor de la capacidad vital forzada medida en la espirometría de reposo. El PHB se relacionó de forma positiva (r = 0,93) con el umbral ventilatorio 2 o umbral de compensación respiratoria.

Conclusiones

Existe relación directa entre el PHB y VT/tI. El PHB se relaciona con el umbral ventilatorio 2, de manera que intervendría en el control del patrón ventilatorio durante el ejercicio. La entrada en funcionamiento del reflejo podría contribuir informando a los centros respiratorios para llevar a cabo el cambio de patrón ventilatorio.

Palabras clave:
Patrón respiratorio
Reflejo de Hering-Breuer
Umbral ventilatorio
Full text is only available in PDF
REFERENCES
[1]
C von Euler.
On the central pattern generator for the basic breathing rhythmicity.
J Appl Physiol, 55 (1983), pp. 1647-1659
[2]
J Askanazi, J Milie-Emili, JR Broell, AI Hyman, JM Kinney.
Influence of exercise and CO2 on breathing pattern of normal man.
J Appl Physiol, 47 (1979), pp. 192-196
[3]
JM Clark, FC Hagerman, R Gelfand.
Breathing patterns during submaximal and maximal exercise in elite oarsmen.
J Appl Physiol, 55 (1983), pp. 440-446
[4]
I Ellingsen, G Sydnes, A Hauge, G Nicolaysen.
Effects of exercise and CO2 inhalation on the breathing pattern in man.
Acta Physiol Scand, 134 (1988), pp. 161-173
[5]
F Lind, CM Hesser.
Breathing pattern and lung volumes during exercise.
Acta Physiol Scand, 120 (1984), pp. 123-129
[6]
FJ Clark, C von Euler.
On the regulation of depth and rate of breathing.
J Physiol, 222 (1972), pp. 267-295
[7]
JA Dempsey, L Adams, D Ainsworth, RF Fregosi, CG Gallagher, A Guz, et al.
Airway, lung and respiratory muscle function during exercise.
Handbook of physiology exercise: regulation and integration of multiple systems, pp. 69-91
[8]
CG Gallagher, E Brown, M Younes.
Breathing pattern during maximal exercise and during submaximal exercise with hypercapnia.
J Appl Physiol, 63 (1987), pp. 238-244
[9]
BJ Martin, JV Weil.
CO2 and exercise tidal volume.
J Appl Physiol, 46 (1979), pp. 322-325
[10]
J Polacheck, R Strong, J Arens, C Davies, I Metcalf, M Younes.
Phasic vagal influence on inspiratory motor output in anesthetized human subjects.
J Appl Physiol, 49 (1980), pp. 609-619
[11]
A Lucía, A Carvajal, FJ Calderón, A Alfonso, JL Chicharro.
Breathing pattern in highly competitive cyclists during incremental exercise.
Eur J Appl Physiol Occup Physiol, 79 (1999), pp. 512-521
[12]
C Flynn, HV Forster, LG Pan, GE Bisgard.
Role of hilar nerve afferents in hyperpnea of exercise.
J Appl Physiol, 59 (1985), pp. 798-806
[13]
FC Sciurba, GR Owens, MH Sanders, BP Griffith, RL Hardesty, IL Paradis, et al.
Evidence of an altered pattern of breathing during exercise in recipients of heart-lung transplants.
N Engl J Med, 319 (1988), pp. 1186-1192
[14]
WL Beaver, K Wasserman, BJ Whipp.
A new method for detecting anaerobic threshold by gas exchange.
J Appl Physiol, 60 (1986), pp. 2020-2027
[15]
SE Gaskill, BC Ruby, AJ Walker, OA Sánchez, RC Serfass, AS Leon.
Validity and reliability of combining three methods to determine ventilatory threshold.
Med Sci Sports Exerc, 33 (2001), pp. 1841-1848
[16]
K Wasserman, JE Hansen, DY Sue, BJ Whipp, R Casaburi.
Principles of exercise testing and interpretation, 2nd ed., Lea & Febiger, (1994),
[17]
WMA.
Declaración de Helsinki para la investigación con seres humanos.
[18]
GJ Quanjer, JE Tammeling, LM Cotes, H Fabbri, OF Matthys, R Pedersen, et al.
Lung volume and forced ventilatory flows. Report working party standarization of lung funtion tests, European Community for Steel and Coal.
Eur Respir J Suppl, 16 (1993), pp. 5-40
[19]
K Wasserman, BJ Whipp, SN Koyl, WL Beaver.
Anaerobic threshold and respiratory gas exchange during exercise.
J Appl Physiol, 35 (1973), pp. 236-243
[20]
JM Bland, DJ Altman.
Regression analysis.
Lancet, 19 (1986), pp. 908-909
[21]
CG Gallagher.
Exercise and chronic obstructive pulmonary disease.
Med Clin North Am, 74 (1990), pp. 619-641
[22]
JM Ruiz de Ona Lacasta, J García de Pedro, L Puente Maestu, D Llorente Íñigo, J Celdrán Gil, JM Cubillo Marcos.
Effects of muscle training on breathing pattern in patients with severe chronic obstructive pulmonary disease.
Arch Bronconeumol, 40 (2004), pp. 20-23
[23]
JD Kay, ES Petersen, H Vejby-Christensen.
Breath-by-breath pattern in man during steady-state bicycle exercise.
J Physiol, 244 (1975), pp. 52P-53P
[24]
FC Sciurba, GR Owens, MH Sanders, JP Costantino, IL Paradis, BP Griffith.
The effect of obliterative bronchiolitis on breathing pattern during exercise in recipients of heart-lung transplants.
Am Rev Respir Dis, 144 (1991), pp. 131-135
[25]
FL Eldridge, TG Waldrop.
Neural control of breathing during exercise.
Exercise: pulmonary physiology and pathophysiology, pp. 309-370
[26]
HM Coleridge, JCG Coleridge.
Reflexes evoked from tracheobronchial tree and lungs.
Handbook of physiology, pp. 407-413
[27]
PS Clifford, JT Litzow, JH von Colditz, RL Coon.
Effect of chronic pulmonary denervation on ventilatory responses to exercise.
J Appl Physiol, 61 (1986), pp. 603-610
[28]
DM Ainsworth, CA Smith, BD Johnson, SW Eicker, KS Henderson, JA Dempsey.
Vagal modulation of respiratory muscle activity in awake dogs during exercise and hypercapnia.
J Appl Physiol, 72 (1992), pp. 1362-1367
[29]
MJ Joyner, SM Jilka, JA Taylor, JK Kalis, J Nittolo, RW Hicks, et al.
Beta-blockade reduces tidal volume during heavy exercise in trained and untrained men.
J Appl Physiol, 62 (1987), pp. 1819-1825
[30]
J Milie-Emili, WA Zin.
Relationship between neuromuscular respiratory drive and ventilatory output.
Handbook of physiology. The respiratory system, pp. 631-646
[31]
WA Whitelaw, JP Derenne, J Milie-Emili.
Occlusion pressure as a measure of respiratory center output in conscious man.
Respir Physiol, 23 (1975), pp. 181-199
[32]
T Matsuoka, JP Mortola.
Effects of hypoxia and hypercapnia on the Hering-Breuer reflex of the conscious newborn rat.
J Appl Physiol, 78 (1995), pp. 5-11
[33]
P McLoughlin, P Popham, RA Linton, RC Bruce, DM Band.
Exercise-induced changes in plasma potassium and the ventilatory threshold in man.
J Physiol, 479 (1994), pp. 139-147
[34]
DJ Paterson.
Potassium and breathing in exercise.
Sports Med, 23 (1997), pp. 149-163
[35]
MP Kaufman, HV Forster.
Reflexes controlling circulatory. Ventilatory and airway responses to exercise.
Handbook of physiology. Exercise: regulation and integration of multiple systems, pp. 333-380
[36]
M González-García, M Barrero, D Maldonado.
Exercise limitation in patients with chronic obstructive pulmonary disease at the altitude of Bogota (2,640 m). Breathing pattern and arterial gases at rest and peak exercise.
Arch Bronconeumol, 40 (2004), pp. 54-61
Copyright © 2006. Sociedad Española de Neumología y Cirugía Torácica (SEPAR)
Archivos de Bronconeumología
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?