Journal Information
Vol. 45. Issue 10.
Pages 487-495 (October 2009)
Share
Share
Download PDF
More article options
Vol. 45. Issue 10.
Pages 487-495 (October 2009)
Original article
Full text access
Relationship Between Expiratory Muscle Dysfunction and Dynamic Hyperinflation in Advanced Chronic Obstructive Pulmonary Disease
Relación entre disfunción de los músculos espiratorios e hiperinflación dinámica en la EPOC avanzada
Visits
5136
Susana Motaa,b,
Corresponding author
smota@ono.com

Corresponding author.
, Rosa Güellb, Esther Barreiroc, Pere Casanb, Joaquim Geac, Joaquín Sanchisb
a Unitat de Pneumologia, Servei de Medicina Interna, Hospital Santa Caterina, Salt, Girona, Spain. Departamento de Medicina Interna, Universitat Autònoma de Barcelona, Barcelona, Spain
b Departament de Pneumologia, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
c Servei de Pneumologia i Grup de Recerca en Múscul i Aparell Respiratori (URMAR), Hospital del Mar-IMIM, Departament CEXS, Universitat Pompeu Fabra, Barcelona, Spain CibeRes, ISC III, Bunyola, Balears, Spain
This item has received
Article information
Abstract
Background and objectives

Dynamic hyperinflation and expiratory flow limitation, which are physiologically linked phenomena, play a role in the pathophysiology of dyspnea and have a negative impact on quality of life in patients with chronic obstructive pulmonary disease (COPD). The expiratory muscle dysfunction associated with advanced COPD may be involved in the genesis of dynamic hyperinflation. Our objective was to study the relationship between expiratory muscle dysfunction and dynamic hyperinflation and to analyze their association with dyspnea and quality of life in patients with advanced COPD.

Patients and methods

In 25 patients we measured lung function, exercise capacity (measured by incremental ergometry and the 6-minute walk test), expiratory flow limitation and end-expiratory lung volume (EELV) during exercise, respiratory muscle function, dyspnea, and quality of life (using the St George's Respiratory Questionnaire [SGRQ]).

Results

The patients, whose mean forced expiratory volume in 1 second (FEV1) was 31% of predicted, exhibited a moderate decrease in respiratory muscle strength and resistance to fatigue. Expiratory flow limitation was observed in 19 patients at rest and in 24 patients at 70% of maximal workload (Wmax). EELV increased from rest to 70% of Wmax (9% of predicted forced vital capacity). At 70% of Wmax, EELV correlated inversely with expiratory flow limitation (ρ=−0.42), inspiratory (ρ=−0.43) and expiratory (ρ=−0.42) muscle endurance, and maximal oxygen uptake (ρ=−0.52). The increase in EELV from resting to 70% of Wmax correlated with dyspnea (ρ=0.53), and expiratory flow limitation at 70% of Wmax correlated with the activity score on the SGRQ (ρ=−0.56). FEV1, expiratory muscle endurance and expiratory flow limitation were independent predictors of EELV at 70% Wmax.

Conclusion

In advanced COPD, decreased resistance to fatigue in expiratory muscles is associated with an increase in dynamic hyperinflation (and less expiratory flow limitation) during exercise, a pattern that in turn correlates with more severe dyspnea and reduced quality of life.

Keywords:
COPD
Dyspnea
Exercise
Airflow limitation
Health-related quality of life
Hyperinflation
Respiratory muscles
Resumen
Introducción

La hiperinflación dinámica (HD) y la limitación del flujo espiratorio (LFE) están vinculadas fisiológicamente e intervienen en la fisiopatogenia de la disnea y del deterioro de la calidad de vida en la enfermedad pulmonar obstructiva crónica (EPOC). En la EPOC avanzada existe disfunción de los músculos espiratorios, que podría potenciar el desarrollo de HD. El objetivo del presente trabajo ha sido estudiar la relación entre disfunción muscular espiratoria y grado de HD en la EPOC avanzada, y su asociación con disnea y calidad de vida.

Pacientes y métodos

En 25 pacientes determinamos la función pulmonar, la capacidad de esfuerzo (ergometría incremental y prueba de la marcha), la LFE y el volumen telespiratorio (VTE) durante el ejercicio, la función muscular respiratoria, la disnea y la calidad de vida (con el St. George's Respiratory Questionnaire).

Resultados

Los pacientes (volumen espiratorio forzado en el primer segundo del 31% del valor de referencia) tenían moderadamente reducidas la fuerza y la resistencia musculares respiratorias. Diecinueve mostraban LFE en reposo y 24 al 70% de la carga máxima (Wmáx). El VTE aumentó desde el reposo hasta el 70% de la Wmáx (un 9% del valor de referencia de la capacidad vital forzada). Al 70% de la Wmáx el VTE se correlacionó inversamente con la LFE (rho = −0,42), las resistencias musculares inspiratoria (rho = −0,43) y espiratoria (rho = −0,42) y el consumo máximo de oxígeno (rho = −0,52). El incremento del VTE desde reposo hata el 70% de Wmáx se correlacionó con la disnea (rho = 0,53), y –la LFE al 70% de Wmáx con la escala de actividad del St. George's Respiratory Questionnaire (rho = −0,56). Fueron predictores independientes del VTE al 70% de Wmáx el volumen espiratorio forzado en el primer segundo, la resistencia muscular espiratoria y la LFE.

Conclusiones

En la EPOC avanzada la reducción de la resistencia de los músculos espiratorios está relacionada con mayor HD (y menor LFE) durante el ejercicio, lo que se asocia a mayor disnea y peor calidad de vida.

Palabras clave:
EPOC
Disnea
Ejercicio
Limitación del flujo aéreo
Calidad de vida relacionada con la salud
Hiperinflación
Músculos respiratorios
Full text is only aviable in PDF
References
[1.]
C. Casanova, C. Cote, J.P. De Torres, A. Aguirre-Jaime, J.M. Marín, V. Pinto-Plata, et al.
Inspiratory-to-total lung capacity ratio predicts mortality in patients with chronic obstructive pulmonary disease.
Am J Respir Crit Care Med, 171 (2005), pp. 591-597
[2.]
M. Demedts.
Mechanisms and consequences of hyperinflation.
Eur Respir J, 3 (1990), pp. 617-618
[3.]
D.E. O’Donnell, S.M. Revill, A. Webb.
Dynamic hyperinflation and exercise intolerance in chronic obstructive pulmonary disease.
Am J Respir Crit Care Med, 164 (2001), pp. 770-777
[4.]
D.E. O’Donnell, K.A. Webb.
Exertional breathlessness in patients with chronic airflow-limitation.
Am Rev Respir Dis, 148 (1993), pp. 1351-1357
[5.]
N.G. Koulouris, P. Valta, A. Lavoie, C. Corbeil, M. Chassé, J. Braidly, et al.
A simple method to detect expiratory flow limitation during spontaneous breathing.
Eur Respir J, 8 (1995), pp. 306-313
[6.]
L. Eltayara, M.R. Becklake, C.A. Volta, J. Milic-Emili.
Relationship between chronic dyspnea and expiratory flow limitation in patients with chronic obstructive pulmonary disease.
Am J Respir Crit Care Med, 154 (1996), pp. 1726-1734
[7.]
N.G. Koulouris, I. Dimopoulou, P. Valta, R. Finkelstein, M.G. Cosio, J. Milic-Emili.
Detection of expiratory flow limitation during exercise in COPD patients.
J Appl Physiol, 82 (1997), pp. 723-731
[8.]
M.J. Morris, R.G. Madgwick, D.J. Lane.
Difference between functional residual capacity and elastic equilibrium volume in patients with chronic obstructive pulmonary disease.
Thorax, 51 (1996), pp. 415-419
[9.]
S. Mota, P. Casan, F. Drobnic, J. Giner, O. Ruiz, J. Sanchis, et al.
Expiratory flow limitation during exercise in competition cyclists.
J Appl Physiol, 86 (1999), pp. 611-616
[10.]
A. Aliverti, N. Stevenson, R.L. Dellacà, A. Lo Mauro, A. Pedotti, P.M.A. Calverley.
Regional chest wall volumes during exercise in chronic obstructive pulmonary disease.
Thorax, 59 (2004), pp. 210-216
[11.]
I. Vogiatzis, O. Georgiadou, S. Golemati, A. Aliverti, E. Kosmas, E. Kastanakis, et al.
Patterns of dynamic hyperinflation during exercise and recovery in patients with severe chronic obstructive pulmonary disease.
Thorax, 60 (2005), pp. 723-729
[12.]
A. Aliverti, I. Iandelli, R. Duranti, S.J. Cala, B. Kayser, S. Kelly, et al.
Respiratory muscle dynamics and control during exercise with externally imposed expiratory flow limitation.
J Appl Physiol, 92 (2002), pp. 1953-1963
[13.]
B.J. Whipp, R.L. Pardy.
Breathing during exercise.
pp. 605-629
[14.]
A. Ramírez-Sarmiento, M. Orozco-Levi, E. Barreiro, R. Méndez, A. Ferrer, J. Broquetas, et al.
Expiratory muscle endurance in chronic obstructive pulmonary disease.
Thorax, 57 (2002), pp. 132-136
[15.]
A. Ramírez-Sarmiento, M. Orozco-Levi, R. Güell, E. Barreiro, N. Hernández, S. Mota, et al.
Inspiratory muscle training in patients with chronic obstructive pulmonary disease: structural adaptation and physiologic outcomes.
Am J Respir Crit Care Med, 166 (2002), pp. 1491-1497
[16.]
S. Mota, R. Güell, E. Barreiro, I. Solanes, A. Ramírez-Sarmiento, M. Orozco-Levi, et al.
Clinical outcomes of expiratory muscle training in severe COPD patients.
Respir Med, 101 (2007), pp. 516-524
[17.]
J. Roca, J. Sanchis, A. Agustí-Vidal, R. Rodríguez-Roisin.
Spirometric reference values for a Mediterranean population.
Bull Eur Physiopathol Respir, 22 (1986), pp. 217-224
[18.]
J. Roca, R. Rodríguez-Roisin, E. Cobo, F. Burgos, J. Pérez, J.L. Clausen.
Single breath carbon monoxide diffusing capacity (DLCO) prediction equations for a Mediterranean population.
Am Rev Respir Dis, 141 (1990), pp. 1026-1032
[19.]
P. Morales, J. Sanchis, P.J. Cordero, J.L. Díez.
Presiones respiratorias estáticas máximas en adultos. Valores de referencia en una población caucasiana mediterránea.
Arch Bronconeumol, 33 (1997), pp. 213-219
[20.]
J.B. Martyn, R.H. Brown, P.D. Pare, R.L. Pardy.
Measurement of inspiratory muscle performance with incremental threshold loading.
Am Rev Respir Dis, 135 (1987), pp. 919-923
[21.]
M. Orozco-Levi, J. Gea, A. Ferrer, R. Méndez, A. Ramírez-Sarmiento, D. Maldonado, et al.
Expiratory muscle endurance in middle-aged healthy subjects.
Lung, 179 (2001), pp. 93-103
[22.]
N. Jones, E.J.M. Campbell.
Clinical exercise testing.
Saunders, (1988),
[23.]
P. Valta, C. Corbeil, A. Lavoie, R. Campodonico, N. Koulouris, M. Chassé, et al.
Detection of expiratory flow limitation during mechanical ventilation.
Am J Respir Crit Care Med, 150 (1994), pp. 1311-1317
[24.]
P.H. Quanjer, G.J. Tammeling, J.E. Cotes, D.E. Pedersen, R. Peslin, J.C. Yernault.
Lung volumes and forced ventilatory flows. Report working party standardization of lung function tests. European Community for Steel and Coal. Official statement of the European Respiratory Society.
Eur Respir J, 6 (1993), pp. 5-40
[25.]
D.A. Mahler, A. Harver.
Measurement of symptoms: the benchmark of treatment. Minimizing the effects of dyspnea in COPD patients.
J Respir Dis, 8 (1987), pp. 23-34
[26.]
M. Ferrer, J. Alonso, L. Prieto, V. Plaza, E. Monsó, R. Marrades, et al.
Validity and reliability of the St George's Respiratory Questionnaire after adaptation to a different language and culture: the Spanish example.
Eur Respir J, 9 (1996), pp. 1160-1166
[27.]
O. Díaz, C. Villafranca, H. Ghezzo, G. Borzone, A. Leiva, J. Milic-Emili, et al.
Role of inspiratory capacity on exercise tolerance in COPD patients with and without tidal expiratory flow limitation at rest.
Eur Respir J, 16 (2000), pp. 269-275
[28.]
C. Tantucci, M. Ellaffi, A. Duguet, M. Zelter, T. Similowski, J.P. Derenne, et al.
Dynamic hyperinflation and flow limitation during methacholine-induced bronchoconstriction in asthma.
Eur Respir J, 14 (1999), pp. 295-301
[29.]
T.G. Babb, R. Viggiano, B. Hurley, B. Staats, J.R. Rodarte.
Effect of mild-to-moderate airflow limitation on exercise capacity.
J Appl Physiol, 70 (1991), pp. 223-230
[30.]
R. Pellegrino, V. Brusasco, J.R. Rodarte, T.G. Babb.
Expiratory flow limitation and regulation of end-expiratory lung volume during exercise.
J Appl Physiol, 74 (1999), pp. 2552-2558
[31.]
L.M. Romer, M.I. Polkey.
Exercise-induced respiratory muscle fatigue: implications for performance.
J Appl Physiol, 104 (2008), pp. 879-888
[32.]
M. Simon, P. LeBlanc, J. Jobin, M. Desmeules, M.J. Sullivan, F. Maltais.
Limitation of lower limb VO2 during cycling exercise in COPD patients.
J Appl Physiol, 90 (2001), pp. 1013-1019
[33.]
D. Kyroussis, G.H. Mills, M.I. Polkey, C.H. Hamngard, N. Koulouris, M. Green, et al.
Abdominal muscle fatigue after maximal ventilation in humans.
J Appl Physiol, 81 (1996), pp. 1477-1483
[34.]
O. Georgiadou, I. Vogiatzis, G. Stratakos, A. Koutsoukou, S. Golemati, A. Aliverti, et al.
Effects of rehabilitation on chest wall volume regulation during exercise in COPD patients.
Eur Respir J, 29 (2007), pp. 284-291
[35.]
P. Weiner, R. Magadle, M. Beckerman, M. Weiner, N. Berar-Yanay.
Specific expiratory training in COPD.
Chest, 124 (2003), pp. 468-473
[36.]
E. Boni, L. Corda, D. Franchini, P. Chiroli, G.P. Damiani, L. Pini, et al.
Volume effect and exertional dyspnoea after bronchodilator in patients with COPD with and without expiratory flow limitation at rest.
Thorax, 57 (2002), pp. 528-532
[37.]
D.E. O’Donnell.
Hyperinflation, dyspnea and exercise intolerance in chronic obstructive pulmonary disease.
Proc Am Thorac Soc, 3 (2006), pp. 180-184
[38.]
G. Liistro, C. Veriter, M. Dury, G. Aubert, D. Stanescu.
Expiratory flow limitation in awake sleep-disordered breathing subjects.
Eur Respir J, 14 (1999), pp. 185-190
[39.]
C. Tantucci, A. Duguet, A. Ferretti, S. Mehiri, I. Arnulf, M. Zelter, et al.
Effect of negative expiratory pressure on respiratory system flow resistance in awake snorers and nonsnorers.
J Appl Physiol, 87 (1999), pp. 969-976
[40.]
J. Hadcroft, P.M.A. Calverley.
Alternative methods for assessing bronchodilator reversibility in chronic obstructive pulmonary disease.
Thorax, 56 (2001), pp. 713-720

Preliminary results presented at the Annual SEPAR Congress in Madrid in 2004.

Copyright © 2009. Sociedad Española de Neumología y Cirugía Torácica
Archivos de Bronconeumología
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?