array:22 [
  "pii" => "S0300289624002394"
  "issn" => "03002896"
  "doi" => "10.1016/j.arbres.2024.06.016"
  "estado" => "S200"
  "fechaPublicacion" => "2024-07-19"
  "aid" => "3612"
  "copyright" => "SEPAR"
  "copyrightAnyo" => "2024"
  "documento" => "simple-article"
  "crossmark" => 0
  "subdocumento" => "cor"
  "abierto" => array:3 [
    "ES" => false
    "ES2" => false
    "LATM" => false
  ]
  "gratuito" => false
  "lecturas" => array:1 [
    "total" => 0
  ]
  "itemSiguiente" => array:17 [
    "pii" => "S0300289624002266"
    "issn" => "03002896"
    "doi" => "10.1016/j.arbres.2024.06.007"
    "estado" => "S200"
    "fechaPublicacion" => "2024-07-19"
    "aid" => "3602"
    "copyright" => "SEPAR"
    "documento" => "article"
    "crossmark" => 0
    "subdocumento" => "fla"
    "abierto" => array:3 [
      "ES" => false
      "ES2" => false
      "LATM" => false
    ]
    "gratuito" => false
    "lecturas" => array:1 [
      "total" => 0
    ]
    "en" => array:12 [
      "idiomaDefecto" => true
      "cabecera" => "<span class="elsevierStyleTextfn">Original Article</span>"
      "titulo" => "Investigation of Inspiratory Muscle Training Efficiency Before Bronchoscopic Lung Volume Reduction&#58; A Randomized Controlled Trial"
      "tienePdf" => "en"
      "tieneTextoCompleto" => "en"
      "tieneResumen" => array:3 [
        0 => "en"
        1 => "en"
        2 => "en"
      ]
      "contieneResumen" => array:1 [
        "en" => true
      ]
      "contieneTextoCompleto" => array:1 [
        "en" => true
      ]
      "contienePdf" => array:1 [
        "en" => true
      ]
      "resumenGrafico" => array:2 [
        "original" => 1
        "multimedia" => array:5 [
          "identificador" => "fig0010"
          "tipo" => "MULTIMEDIAFIGURA"
          "mostrarFloat" => false
          "mostrarDisplay" => true
          "figura" => array:1 [
            0 => array:4 [
              "imagen" => "fx1.jpeg"
              "Alto" => 991
              "Ancho" => 1333
              "Tamanyo" => 158463
            ]
          ]
        ]
      ]
      "autores" => array:1 [
        0 => array:2 [
          "autoresLista" => "Esra Pehlivan, Erdo&#287;an &#199;etinkaya, Zeynep Bet&#252;l &#214;zcan, Fulya Senem Karaahmeto&#287;lu, Mustafa &#199;&#246;rt&#252;k, Amine Ata&#231;, Halit &#199;&#305;narka"
          "autores" => array:7 [
            0 => array:2 [
              "nombre" => "Esra"
              "apellidos" => "Pehlivan"
            ]
            1 => array:2 [
              "nombre" => "Erdo&#287;an"
              "apellidos" => "&#199;etinkaya"
            ]
            2 => array:2 [
              "nombre" => "Zeynep Bet&#252;l"
              "apellidos" => "&#214;zcan"
            ]
            3 => array:2 [
              "nombre" => "Fulya Senem"
              "apellidos" => "Karaahmeto&#287;lu"
            ]
            4 => array:2 [
              "nombre" => "Mustafa"
              "apellidos" => "&#199;&#246;rt&#252;k"
            ]
            5 => array:2 [
              "nombre" => "Amine"
              "apellidos" => "Ata&#231;"
            ]
            6 => array:2 [
              "nombre" => "Halit"
              "apellidos" => "&#199;&#305;narka"
            ]
          ]
        ]
      ]
      "resumen" => array:2 [
        0 => array:3 [
          "titulo" => "Graphical abstract"
          "clase" => "graphical"
          "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><p id="spar0005" class="elsevierStyleSimplePara elsevierViewall"><elsevierMultimedia ident="fig0010"></elsevierMultimedia></p></span>"
        ]
        1 => array:3 [
          "titulo" => "Highlights"
          "clase" => "author-highlights"
          "resumen" => "<span id="abst0010" class="elsevierStyleSection elsevierViewall"><p id="spar0010" class="elsevierStyleSimplePara elsevierViewall"><ul class="elsevierStyleList" id="lis0005"><li class="elsevierStyleListItem" id="lsti0005"><span class="elsevierStyleLabel">&#8226;</span><p id="par0005" class="elsevierStylePara elsevierViewall">Pre-bronchoscopic lung volume reduction &#40;BLVR&#41; pulmonary rehabilitation &#40;PR&#41; has a positive impact on patients&#8217; clinic&#46;</p></li><li class="elsevierStyleListItem" id="lsti0010"><span class="elsevierStyleLabel">&#8226;</span><p id="par0010" class="elsevierStylePara elsevierViewall">Adding IMT to standard PR can lead to a greater increase in improvement in exercise capacity and spirometric parameters&#46;</p></li><li class="elsevierStyleListItem" id="lsti0015"><span class="elsevierStyleLabel">&#8226;</span><p id="par0015" class="elsevierStylePara elsevierViewall">Evaluating the effects of post-PR gains on patient clinic is necessary to make a decision regarding the BLVR procedure&#46;</p></li></ul></p></span>"
        ]
      ]
    ]
    "idiomaDefecto" => "en"
    "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0300289624002266?idApp=UINPBA00003Z"
    "url" => "/03002896/unassign/S0300289624002266/v1_202407190426/en/main.assets"
  ]
  "itemAnterior" => array:16 [
    "pii" => "S0300289612000968"
    "issn" => "03002896"
    "doi" => "10.1016/j.arbres.2012.02.017"
    "estado" => "S200"
    "fechaPublicacion" => "2013-05-08"
    "aid" => "621"
    "documento" => "simple-article"
    "crossmark" => 0
    "subdocumento" => "ret"
    "abierto" => array:3 [
      "ES" => false
      "ES2" => false
      "LATM" => false
    ]
    "gratuito" => false
    "lecturas" => array:2 [
      "total" => 348
      "formatos" => array:2 [
        "HTML" => 82
        "PDF" => 266
      ]
    ]
    "en" => array:8 [
      "idiomaDefecto" => true
      "titulo" => "WITHDRAWN&#58; Respiratory Muscle Assessment in Predicting Extubation Outcome in Patients With Stroke"
      "tienePdf" => "en"
      "tieneTextoCompleto" => 0
      "tieneResumen" => "en"
      "contieneResumen" => array:1 [
        "en" => true
      ]
      "contienePdf" => array:1 [
        "en" => true
      ]
      "autores" => array:1 [
        0 => array:2 [
          "autoresLista" => "Antonio A&#46;M&#46; Castro, Felipe Cortopassi, Russell Sabbag, Luis Torre-Bouscoulet, Claudia K&#252;mpel, Elias Ferreira Porto"
          "autores" => array:6 [
            0 => array:2 [
              "nombre" => "Antonio A&#46;M&#46;"
              "apellidos" => "Castro"
            ]
            1 => array:2 [
              "nombre" => "Felipe"
              "apellidos" => "Cortopassi"
            ]
            2 => array:2 [
              "nombre" => "Russell"
              "apellidos" => "Sabbag"
            ]
            3 => array:2 [
              "nombre" => "Luis"
              "apellidos" => "Torre-Bouscoulet"
            ]
            4 => array:2 [
              "nombre" => "Claudia"
              "apellidos" => "K&#252;mpel"
            ]
            5 => array:2 [
              "nombre" => "Elias Ferreira"
              "apellidos" => "Porto"
            ]
          ]
        ]
      ]
    ]
    "idiomaDefecto" => "en"
    "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0300289612000968?idApp=UINPBA00003Z"
    "url" => "/03002896/unassign/S0300289612000968/v2_201305131254/en/main.assets"
  ]
  "en" => array:11 [
    "idiomaDefecto" => true
    "cabecera" => "<span class="elsevierStyleTextfn">Discussion Letter</span>"
    "titulo" => "Radiomics and Clinical Data for the Diagnosis of Incidental Pulmonary Nodules and Lung Cancer Screening&#58; Correspondence"
    "tieneTextoCompleto" => true
    "saludo" => "To the Director&#44;"
    "autores" => array:1 [
      0 => array:4 [
        "autoresLista" => "Hinpetch Daungsupawong, Viroj Wiwanitkit"
        "autores" => array:2 [
          0 => array:4 [
            "nombre" => "Hinpetch"
            "apellidos" => "Daungsupawong"
            "email" => array:1 [
              0 => "hinpetchdaung@gmail.com"
            ]
            "referencia" => array:2 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">a</span>"
                "identificador" => "aff0005"
              ]
              1 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">&#42;</span>"
                "identificador" => "cor0005"
              ]
            ]
          ]
          1 => array:3 [
            "nombre" => "Viroj"
            "apellidos" => "Wiwanitkit"
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">b</span>"
                "identificador" => "aff0010"
              ]
            ]
          ]
        ]
        "afiliaciones" => array:2 [
          0 => array:3 [
            "entidad" => "Private Academic Consultant&#44; Phonhong&#44; Lao Democratic People&#39;s Republic"
            "etiqueta" => "a"
            "identificador" => "aff0005"
          ]
          1 => array:3 [
            "entidad" => "Department of Research Analytics&#44; Saveetha Dental College and Hospitals&#44; Saveetha Institute of Medical and Technical Sciences&#44; Saveetha University&#44; India"
            "etiqueta" => "b"
            "identificador" => "aff0010"
          ]
        ]
        "correspondencia" => array:1 [
          0 => array:3 [
            "identificador" => "cor0005"
            "etiqueta" => "&#8270;"
            "correspondencia" => "Corresponding author&#46;"
          ]
        ]
      ]
    ]
    "textoCompleto" => "<span class="elsevierStyleSections"><p id="par0005" class="elsevierStylePara elsevierViewall">We would like to share ideas on the publication &#8220;Radiomics and Clinical Data for the Diagnosis of Incidental Pulmonary Nodules and Lung Cancer Screening&#58; Radiolung Integrative Predictive Model&#46;<a class="elsevierStyleCrossRef" href="#bib0005"><span class="elsevierStyleSup">1</span></a>&#8221; By combining clinical data and deep learning techniques&#44; this study attempted to construct a radiomic model for predicting the malignancy of pulmonary nodules &#40;PNs&#41;&#46; The study examined pulmonary function tests and epidemiological risk variables in 97 PNs from 93 patients&#46; The radiomic model extracted visual features using a pre-trained convolutional network and fed the results into an optimized neural network&#46; The outcomes demonstrated the radiomic model&#39;s 86&#37; positive predictive value &#40;PPV&#41;&#44; 79&#37; accuracy&#44; and 0&#46;67 area under the curve &#40;AUC&#41;&#46;</p><p id="par0010" class="elsevierStylePara elsevierViewall">One potential weakness of the study is the radiomic model&#39;s small AUC of 0&#46;67&#44; indicating a moderate level of accuracy in predicting malignancy&#46; This shows that the radiomic model&#39;s performance should be improved further&#46; Furthermore&#44; the study did not offer precise information on the exact features collected by the convolutional network&#44; which may limit the interpretation of the results&#46;</p><p id="par0015" class="elsevierStylePara elsevierViewall">This study raises the question of whether the findings may be generalized to other patient populations or imaging technology&#46; The study sample was limited&#44; and it may not be indicative of the whole population with PNs&#46; Future research could benefit from integrating a bigger and more diverse patient group to validate the findings and evaluate the model&#39;s efficacy in other scenarios&#46;</p><p id="par0020" class="elsevierStylePara elsevierViewall">In order to improve the model&#39;s predicted accuracy even more&#44; future research areas can look into other clinical markers or imaging modalities&#46; Incorporating more extensive clinical data&#44; like genetic data or biomarkers&#44; may enhance the model&#39;s functionality&#46; Furthermore&#44; enhancing the radiomic model&#39;s interpretability by the identification of particular elements that augment the predictive accuracy may yield significant insights for clinical decision-making&#46; To evaluate the model&#39;s practicality&#44; more research might concentrate on independent cohorts for external validation of the model&#46;</p><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0005">Authors&#8217; contribution</span><p id="par0025" class="elsevierStylePara elsevierViewall">HP 50&#37; ideas&#44; writing&#44; analyzing&#44; approval&#46;</p><p id="par0030" class="elsevierStylePara elsevierViewall">VW 50&#37; ideas&#44; supervision&#44; approval&#46;</p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0010">Conflict of interest</span><p id="par0035" class="elsevierStylePara elsevierViewall">None&#46;</p></span></span>"
    "textoCompletoSecciones" => array:1 [
      "secciones" => array:3 [
        0 => array:2 [
          "identificador" => "sec0005"
          "titulo" => "Authors&#8217; contribution"
        ]
        1 => array:2 [
          "identificador" => "sec0010"
          "titulo" => "Conflict of interest"
        ]
        2 => array:1 [
          "titulo" => "Reference"
        ]
      ]
    ]
    "pdfFichero" => "main.pdf"
    "tienePdf" => true
    "bibliografia" => array:2 [
      "titulo" => "Reference"
      "seccion" => array:1 [
        0 => array:2 [
          "identificador" => "bibs0015"
          "bibliografiaReferencia" => array:1 [
            0 => array:3 [
              "identificador" => "bib0005"
              "etiqueta" => "1"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Radiomics and clinical data for the diagnosis of incidental pulmonary nodules and lung cancer screening&#58; radiolung integrative predictive model"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => true
                          "autores" => array:6 [
                            0 => "S&#46; Baeza"
                            1 => "D&#46; Gil"
                            2 => "C&#46; Sanchez"
                            3 => "G&#46; Torres"
                            4 => "J&#46; Carmezim"
                            5 => "C&#46; Teb&#233;"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1016/j.arbres.2024.05.027"
                      "Revista" => array:3 [
                        "tituloSerie" => "Arch Bronconeumol"
                        "fecha" => "2024"
                        "itemHostRev" => array:3 [
                          "pii" => "S0190962217323253"
                          "estado" => "S300"
                          "issn" => "01909622"
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
          ]
        ]
      ]
    ]
  ]
  "idiomaDefecto" => "en"
  "url" => "/03002896/unassign/S0300289624002394/v1_202407190426/en/main.assets"
  "Apartado" => null
  "PDF" => "https://static.elsevier.es/multimedia/03002896/unassign/S0300289624002394/v1_202407190426/en/main.pdf?idApp=UINPBA00003Z&text.app=https://archbronconeumol.org/"
  "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0300289624002394?idApp=UINPBA00003Z"
]
Share
Journal Information
Share
Share
Download PDF
More article options
Discussion Letter
Full text access
Available online 19 July 2024
Radiomics and Clinical Data for the Diagnosis of Incidental Pulmonary Nodules and Lung Cancer Screening: Correspondence
Visits
495
Hinpetch Daungsupawonga,
Corresponding author
hinpetchdaung@gmail.com

Corresponding author.
, Viroj Wiwanitkitb
a Private Academic Consultant, Phonhong, Lao Democratic People's Republic
b Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
This item has received
Article information
Full Text
Bibliography
Download PDF
Statistics
Full Text
To the Director,

We would like to share ideas on the publication “Radiomics and Clinical Data for the Diagnosis of Incidental Pulmonary Nodules and Lung Cancer Screening: Radiolung Integrative Predictive Model.1” By combining clinical data and deep learning techniques, this study attempted to construct a radiomic model for predicting the malignancy of pulmonary nodules (PNs). The study examined pulmonary function tests and epidemiological risk variables in 97 PNs from 93 patients. The radiomic model extracted visual features using a pre-trained convolutional network and fed the results into an optimized neural network. The outcomes demonstrated the radiomic model's 86% positive predictive value (PPV), 79% accuracy, and 0.67 area under the curve (AUC).

One potential weakness of the study is the radiomic model's small AUC of 0.67, indicating a moderate level of accuracy in predicting malignancy. This shows that the radiomic model's performance should be improved further. Furthermore, the study did not offer precise information on the exact features collected by the convolutional network, which may limit the interpretation of the results.

This study raises the question of whether the findings may be generalized to other patient populations or imaging technology. The study sample was limited, and it may not be indicative of the whole population with PNs. Future research could benefit from integrating a bigger and more diverse patient group to validate the findings and evaluate the model's efficacy in other scenarios.

In order to improve the model's predicted accuracy even more, future research areas can look into other clinical markers or imaging modalities. Incorporating more extensive clinical data, like genetic data or biomarkers, may enhance the model's functionality. Furthermore, enhancing the radiomic model's interpretability by the identification of particular elements that augment the predictive accuracy may yield significant insights for clinical decision-making. To evaluate the model's practicality, more research might concentrate on independent cohorts for external validation of the model.

Authors’ contribution

HP 50% ideas, writing, analyzing, approval.

VW 50% ideas, supervision, approval.

Conflict of interest

None.

Reference
[1]
S. Baeza, D. Gil, C. Sanchez, G. Torres, J. Carmezim, C. Tebé, et al.
Radiomics and clinical data for the diagnosis of incidental pulmonary nodules and lung cancer screening: radiolung integrative predictive model.
Copyright © 2024. SEPAR
Archivos de Bronconeumología
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?