Justificación
A lo largo de las últimas décadas, se ha experimentado un incremento progresivo del número de personas que utilizan aviones para sus desplazamientos. Según datos de la International Civil Aviation Organization, en 2000 volaron 1.647 millones de personas y, pese a los problemas derivados de los conflictos de seguridad y del síndrome respiratorio agudo grave (SARS), se prevé que el número de pasajeros experimente un incremento anual del 4,4% hasta el año 20151. En los aeropuertos gestionados por Aeropuertos Españoles y Navegación Aérea (AENA), se realizaron más de dos millones de operaciones de tráfico aéreo durante 2005, lo que supone el embarque de 179 millones de pasajeros2. Estas cifras representan un incremento del 29% en el número de pasajeros desde 2000, con un incremento anual del 6%2.
Por otra parte, los avances alcanzados en el control y tratamiento de muchos trastornos respiratorios crónicos han favorecido un cambio en el estilo de vida de los enfermos. De tal forma, que se plantea la realización de actividades de ocio o profesionales que hace años no eran asumibles.
Aunque no son muy frecuentes, viajar en avión plantea algunos potenciales riesgos respiratorios3. Datos de 120 compañías aéreas integradas en la International Air Transport Association (IATA) muestran que entre 1977 y 1984 se produjeron 577 defunciones en vuelo, lo que supone 0,31 fallecimientos por millón de pasajeros o 25,1 muertes por millón de despegues4. Las complicaciones respiratorias supusieron la tercera causa de muerte reconocida (7%), después de las de origen cardíaco (65%) y neoplásico (9%)4. Además, resultaba llamativo que mientras en los fallecimientos de origen cardíaco sólo se conocía la existencia previa de enfermedad en el 22% de los casos, en las defunciones debidas a trastornos respiratorios se tenía conocimiento previo de la enfermedad en un 46% de los pacientes, por lo que se puede intuir la existencia de algún problema en la evaluación previa al vuelo o en el manejo de los pacientes durante éste4.
Aun sin tratarse de episodios mortales, los síntomas respiratorios son causantes de buena parte de las emergencias que se producen a bordo de un avión. Cuando se analizaron todos los casos en los que se utilizó el botiquín médico de aviones comerciales de la IATA entre agosto de 1984 y julio de 1988, el dolor torácico y la disnea fueron, junto con la pérdida de consciencia, los tres motivos más habituales en 2.322 episodios totales5,6. De igual modo, se comprobó que el 62% de los viajeros que requirió asistencia médica tenía un trastorno médico conocido asociado al episodio acontecido a bordo del avión6, por lo que también se pone de manifiesto la trascendencia de una cuidadosa evaluación previa. En la misma línea, un servicio que ofrecía asistencia de expertos por radio durante emergencias en vuelo recibió 8.450 llamadas en 2001, de las que el 11% correspondía a problemas respiratorios7,8. En definitiva, los problemas respiratorios pueden llegar a suponer el 11% de las urgencias desarrolladas en vuelo.
Frente a esta situación, se han generado diversas normativas o recomendaciones, elaboradas por sociedades científicas o por las propias compañías de aviación7,9-17. Sin embargo, existe poca información científica contrastada con un alto grado de evidencia en este campo, por lo que la mayoría de estas recomendaciones se asentaba únicamente en el consenso de expertos. De hecho, en los últimos años, se han publicado resultados contradictorios con las pautas recomendadas en las normativas previas. Por otra parte, existe un problema local, derivado de la diferente legislación al respecto y de la gran disparidad de criterios, recursos y actitud de las diferentes compañías aéreas.
En este documento, se intentará definir unas pautas de evaluación para enfermos respiratorios crónicos que pretenden viajar en avión, adaptadas a las características de nuestro entorno y a las últimas evidencias disponibles. También se tratará de establecer recomendaciones específicas para las enfermedades respiratorias más habituales.
Los vuelos comerciales y su entorno
Existe abundante información sobre la fisiología respiratoria durante los vuelos, tanto en sujetos sanos como en enfermos9,14-16,18-21. Algunas de estas detalladas revisiones sobre las condiciones ambientales y de acondicionamiento son publicadas por las propias compañías aéreas y están disponibles en Internet22,23.
Conviene recordar que la atmósfera que rodea a la corteza terrestre está compuesta por diferentes capas o estratos: la troposfera, la estratosfera, la mesosfera, la termosfera y la exosfera. La capa más interna es la troposfera, que va desde el nivel del mar hasta los 9.144 m (30.000 pies) en la zona de los polos y hasta los 18.288 m (60.000 pies) en el ecuador (apéndice I). Los aviones comerciales actuales vuelan dentro de esta zona. La presión atmosférica depende de la columna de aire que tiene encima el punto de medición, por ello cuanto mayor sea la altitud, menor será la presión. Como este descenso de la presión atmosférica es logarítmico (fig. 1), inicialmente pequeños cambios de altura producen importantes cambios de presión. Así a 6.096 m (20.000 pies) la presión atmosférica es menos de la mitad que a nivel del mar.
Fig. 1. Relación entre altitud y presión atmosférica.
La composición de la troposfera es constante, con aproximadamente un 78% de nitrógeno y un 21% de oxígeno. Como la presión parcial de un gas está en función de su concentración y de la presión total, la presión de oxígeno depende directamente de la altitud y cae exponencialmente al ascender (fig. 2). Esta hipoxia es la causante de las limitaciones y los riesgos de los alpinistas y también de los problemas de aclimatación en poblaciones establecidas en altitud. Además, la adaptación a este tipo de entorno se agrava por el mayor o menor grado de ejercicio que se efectúe.
Fig. 2. Efecto de la altitud sobre la presión alveolar de oxígeno y la saturación de oxihemoglobina.
En función de las respuestas fisiológicas del hombre, la atmósfera se puede dividir en 3 zonas: la fisiológica, la fisiológicamente deficiente y la zona equivalente al espacio. En la zona fisiológica es donde el cuerpo humano se encuentra bien adaptado y donde el nivel de oxígeno es suficiente para mantener unas funciones normales. Se extiende desde el nivel del mar hasta los 3.000 m. No obstante, cambios rápidos de altitud dentro de esta zona pueden producir problemas menores por la expansión de los gases corporales atrapados. La zona fisiológicamente deficiente se extiende desde los 3.000 a los 15.200 m. En la misma, el descenso de la presión barométrica produce una hipoxia ambiental crítica, por lo que es necesario el uso de oxígeno suplementario en las cotas más altas. Desde el punto de vista fisiológico, a partir de los 15.000 m comienza el espacio. En esta zona, el hombre no puede sobrevivir ni siquiera con oxígeno suplementario dada la baja presión ambiental y necesita trajes presurizados. A partir de los 19.355 m, la presión barométrica es menor que la presión del vapor de agua a 37 ºC y se produce la evaporación de los fluidos corporales.
En general, los aviones comerciales vuelan en torno a los 11.000-12.200 m (36.000-40.000 pies)1,24,25. Si su presión interna dependiese directamente de la presión atmosférica externa, el ambiente resultaría incompatible con la vida. Por tanto, los aviones deben ser presurizados, es decir incrementar su presión con respecto al exterior. Para ello toman el aire ambiente y lo comprimen. Como el gas se calienta en este proceso, posteriormente necesita ser refrigerado26. La presión se controla mediante la cantidad de aire inyectado y mediante válvulas de escape ajustadas a la presión deseada. Para poder soportar la presión diferencial, la estructura de la aeronave debe ser reforzada, lo que incrementa su peso. Tanto por su mayor peso como por la energía adicional necesaria para la compresión del aire, la presurización aumenta el consumo de los aviones, lo que disminuye su autonomía. El sistema de presurización utilizado para los aviones comerciales se denomina isobárico27. Inicialmente, según se asciende se mantiene la misma presión ambiental, a partir de una cierta altitud el sistema mantiene una presión constante (isobárica) a pesar de los cambios en la altitud. Muchos aviones militares utilizan un sistema diferente, el sistema de presurización diferencial-isobárico, que necesita menos instalación estructural y de este modo ahorra peso27.
Debido a las limitaciones técnicas ya comentadas y a su coste, los aviones no son presurizados a una presión equivalente a la del nivel del mar, sino a una presión intermedia dependiente del tipo de avión, pero que suele estar próxima a la equivalente a los 2.400 m1,24,25,28-33. A esta altitud, la presión ambiental de oxígeno es equivalente a respirar un 15,1% de oxígeno a nivel del mar. Pese a que la legislación internacional establece que la presión en cabina mínima debería ser la correspondiente a una altitud de 2.438 m (8.000 pies)34, la presión en cabina no resulta constante durante un vuelo. En una amplia serie de determinaciones realizadas durante vuelos comerciales, se comprobó que las condiciones dentro de las cabinas suelen corresponder a 1.800-2.400 m (6.000-8.000 pies) de altura sobre el nivel del mar29,30,35. En caso de despresurización brusca, se hace necesario el uso de máscaras de oxígeno (obligatorias en el equipamiento de los vuelos comerciales) para sobrevivir. Como dato adicional, destacaremos que a 10.600 m una persona pierde la consciencia a los 30-45 s.
El nivel de presurización también depende del tipo de avión. El antiguo Concorde estaba presurizado a una cómoda presión de 1.829 m (6.000 pies). La tendencia actual de los nuevos modelos, tanto de Boeing como de Airbus, es presurizar a esta presión más confortable y segura36. Sin embargo, se prevé que el nuevo Airbus 380 transportará a cerca de 600 pasajeros con una altitud en cabina superior a 2.438 m (8.000 pies), en ocasiones durante 20 h24.
Además de los problemas derivados de los cambios en la presión barométrica, el ambiente exterior de los vuelos comerciales plantea otros problemas. La concentración de ozono, que es muy baja a nivel del mar, se incrementa con la altitud, y alcanza su pico en la estratosfera. Este gas, importante para filtrar la radiación ultravioleta, resulta tóxico para el sistema respiratorio, incluso a concentraciones menores de 1 ppm que se pueden alcanzar en algunas cotas habituales de vuelo. Para controlar este problema, los aviones tienen instalados catalizadores de ozono, para disminuir su concentración. Las normas de la Federal Aviation Administration establecen una concentración media máxima de 0,1 ppm y un pico máximo de 0,25 ppm1.
La temperatura cae aproximadamente 2 ºC por cada 300 m de altitud, por lo que el aire de los aviones debe ser calentado27. Este aire normalmente tiene un bajo contenido en humedad (5%) y esto puede causar problemas en algunos sujetos. La mayoría de los aviones comerciales recircula aproximadamente el 50% del aire para mejorar las condiciones de humedad ambiental y de eficiencia energética. El aire debe ser filtrado para retener partículas menores de 0,3 µm de diámetro mediante filtros de alta eficiencia (HEPA) similares a los que se colocan en los quirófanos hospitalarios. Este sistema se considera efectivo para retener, además de las partículas en suspensión, bacterias, hongos e incluso virus eliminados durante el habla, accesos de tos y estornudos (fig. 3). La renovación de aire se realiza entre 15-20 veces/h, aunque varía en función de los modelos y las zonas del avión. El sistema de ventilación de la cabina origina flujos de aire en sentido transversal y es capaz de renovar el aire con mayor eficacia que en los edificios con aire acondicionado. Complejos sistemas electrónicos con sensores por toda la aeronave controlan la temperatura y regulan las válvulas con el fin de mantener una temperatura lo más homogénea posible. Por último, conviene mencionar que el contenido en CO2 de este aire filtrado y acondicionado suele ser muy bajo (1.000 ppm).
Fig. 3. Representación esquemática del sistema de ventilación de la cabina de un avión comercial.
Efectos fisiológicos de los vuelos comerciales
Hipoxia hipobárica
La presión parcial de oxígeno inspirado (PIO2) es una función de la presión atmosférica y de la presión de vapor de agua37. Como la presión de vapor de agua a la misma temperatura corporal se mantiene estable con la altitud, la PIO2 se reducirá con la altitud (hipoxia hipobárica)38.
Respirar aire ambiente a 2.438 m (8.000 pies) es equivalente a respirar oxígeno al 15,1% a nivel del mar. Esto implica una caída de la PIO2 de 150 mmHg a nivel del mar hasta 107 mmHg38,39. En sujetos sanos, esto puede suponer una reducción de la presión parcial de oxígeno (PaO2) de 98 a 55 mmHg35,39,40, que suele ser bien tolerada y no produce síntomas. Sin embargo, en pacientes con enfermedades respiratorias crónicas y cierto grado de hipoxemia basal, la disminución de la PIO2 durante el vuelo puede originar reducciones más acusadas de la saturación de oxihemoglobina41-43.
La exposición aguda a un entorno hipobárico desencadena hiperventilación, inducida fundamentalmente por la estimulación de los quimiorreceptores periféricos, y que suele estar mediada por un incremento del volumen corriente38. También origina un aumento del gasto cardíaco para compensar la hipoxia sistémica residual, mediado principalmente por taquicardia31, y que suele ser proporcional a la caída de la saturación de oxígeno44. Al incremento de la perfusión pulmonar ocasionado por el aumento del gasto cardíaco45, se asocia la vasoconstricción hipóxica de la arteria pulmonar y la elevación de las cifras de presión sistólica pulmonar45. Como consecuencia del aumento en las resistencias vasculares pulmonares, se origina una redistribución del flujo sanguíneo que llega a los pulmones y aumenta la perfusión de determinadas zonas pulmonares con respecto a la que tenían a nivel del mar45.
La altitud también se asocia a una limitación en la difusión de oxígeno desde la atmósfera hacia los capilares pulmonares como consecuencia de la interacción de diferentes factores46. Tanto la reducción de la PIO2 como la disminución de la afinidad de la hemoglobina por el oxígeno en situaciones de baja presión arterial de oxígeno originan una caída más intensa en el contenido de oxígeno de los capilares pulmonares que a nivel del mar. Por último, el tiempo de tránsito de la sangre a través de los capilares pulmonares se acorta por la taquicardia originada por la altitud y ello limita el tiempo disponible para establecer un adecu ado equilibrio de oxígeno47. El resultado neto es un incremento en la diferencia alvéolo-arterial de oxígeno42,48,49.
Además, la saturación de oxihemoglobina disminuye de modo significativo cuando se realiza ejercicio físico en un entorno hipobárico50. De igual manera, la realización de ejercicio a grandes altitudes produce un incremento de la diferencia alvéolo-arterial de oxígeno en sujetos residentes habituales a nivel del mar, mientras que no afecta a nativos de elevadas altitudes51. Trabajos realizados con la técnica de eliminación de gases inertes múltiples han demostrado que la hipoxia hipobárica se asocia a una mayor heterogeneidad en la relación ventilación/perfusión y a una limitación de la difusión, que de manera sinérgica empeoran la hipoxemia a medida que aumenta la intensidad del ejercicio52. El factor que más influye en las alteraciones gasométricas durante la realización de ejercicio en un medio hipobárico parece ser la limitación de la difusión, secundaria a la disminución de la PIO251. Por otra parte, el edema intersticial ocasionado por la extravasación de fluidos al espacio extravascular parece potenciar el desequilibrio ventilación/perfusión.
Los cambios descritos tienen muy poca repercusión en sujetos sanos, que únicamente pueden notar un ligero aumento de su volumen corriente y frecuencia cardíaca. Sin embargo, la hipoxia hipobárica supone un riesgo para algunos enfermos respiratorios crónicos, en los que puede agravar la hipoxemia previa y favorecer el desarrollo de complicaciones cardiovasculares. De hecho, se reconoce que la hipoxia disminuye el umbral isquémico en varones con cardiopatía isquémica inducida por el ejercicio, favorece algunas arritmias auriculares y se asocia a latidos ventriculares ectópicos, por el incremento de la actividad simpática38.
Expansión de gases atrapados
A medida que se asciende en la atmósfera, la presión barométrica disminuye y los gases corporales atrapados, que no pueden comunicarse con el exterior, se expanden9. Este fenómeno se explica por la ley de Boyle, que establece que el volumen de un gas es inversamente proporcional a la presión:
P ×V= P' ×V'
Aunque la expansión de los gases atrapados es limitada, se produce de forma rápida, por lo que en sujetos normales puede originar molestias en algunos órganos como en el oído, los senos paranasales, los dientes y el sistema gastrointestinal. En pacientes con enfermedades respiratorias, e incluso en sujetos jóvenes aparentemente normales con pequeñas bullas apicales, puede causar problemas más graves53-56.
Oídos. Los oídos son uno de los órganos donde más frecuentemente se puede producir una obstrucción con atrapamiento aéreo, debido a que la trompa de Eustaquio, que normalmente estabiliza el aire del oído medio con el exterior, se obstruye total o parcialmente. Esto puede ocurrir tanto al ascender como al descender y es también uno de los principales problemas durante las inmersiones. Puede deberse a un defecto crónico intrínseco o adquirido de la conducción o a un proceso agudo derivado de una infección o una reacción alérgica. Al ascender, el aire se expande y ejerce una presión sobre el tímpano que se abomba hacia fuera. Cuando se alcanza una sobrepresión de 12-15 mmHg una pequeña burbuja de aire es expulsada hacia las fosas nasales y, a veces, se acompaña de un pequeño ruido. Al descender, ocurre lo contrario. La presión externa aumenta y el tímpano se abomba hacia dentro. Es mucho más probable que se obstruya en esta maniobra ya que la trompa de Eustaquio funciona peor en este sentido. Este bloqueo aéreo puede producir ruidos, mareos y dolor de oídos a veces muy intenso, sobre todo si la última parte del descenso es muy rápido. Una maniobra útil para prevenir esta obstrucción consiste en tragar saliva frecuentemente. La toma de líquidos o comida también pueden ayudar. En caso de que persista, se recomienda efectuar suaves maniobras de Valsalva38.
Senos paranasales. Los senos paranasales pueden presentar problemas similares a los oídos. En este caso, la obstrucción puede deberse a lesiones crónicas como pólipos o a problemas agudos como el moco causado por infecciones o procesos alérgicos. En general, el problema aparece en los descensos y en el 70% de los casos afecta a los senos frontales. El dolor puede llegar a ser muy intenso53-56.
Barondontalgia. En algunos sujetos se pueden producir dolores dentales, principalmente al ascender entre los 1.500 y los 3.000 m. Inicialmente, se pensaba que pequeñas bolsas de aire atrapadas durante empastes y otras manipulaciones dentales eran la causa de este problema. Sin embargo, esto no ha podido confirmarse, pese a la asociación del cuadro con distintos tipos de afecciones dentales.
Tracto gastrointestinal. En el tracto gastrointestinal es habitual la existencia de distinta cantidad de gases, por lo que suelen ser frecuentes las molestias digestivas durante los vuelos. No obstante, resultan poco relevantes con las presiones en cabina que se alcanzan durante vuelos comerciales.
Pulmones. En sujetos normales, sin alteraciones estructurales, no suele existir problema alguno en este sentido, ya que el gas pulmonar se equilibra rápidamente con el ambiental. No obstante, algunos sujetos normales, jóvenes y aparentemente sanos, pueden tener bullas apicales, que al expandirse durante el ascenso pueden romperse y producir un neumotórax. En algún caso este neumotórax puede ser a tensión y revestir gravedad.
Dado que el gas en las cavidades corporales está saturado de vapor de agua, la expansión originada por la altitud es mayor que la calculada por la ley de Boyle. En el caso de bullas o de un neumotórax cerrado, y puesto que la temperatura corporal se mantiene constante, se puede calcular el incremento de volumen a partir de la siguiente fórmula:
Si se asume que la presión del gas es 760 mmHg a nivel del mar y 365 mmHg a 2.438 m de altitud, y que la PH2O se mantiene constante en 47 mmHg, se puede estimar que el volumen de gas no comunicante aumentará en un 37,6% durante el ascenso.
Este problema resulta mucho más grave en pacientes con enfermedad pulmonar obstructiva crónica (EPOC), ya que suelen tener zonas enfisematosas mal o no comunicadas con el exterior, que pueden ser causa de roturas y neumotórax, además de los problemas derivados de la hipoxia.
Las compañías aéreas suelen recomendar no volar hasta pasadas 6 semanas de la resolución de un neumotórax espontáneo, aunque la evidencia científica de esta recomendación es muy limitada38. Si el neumotórax ha sido tratado con cirugía o con pleurodesis con talco es muy improbable que se produzca una recidiva durante el vuelo.
Buceo y vuelo. Un problema especial se puede presentar después de actividades de buceo con botella. Durante el buceo, sobre todo si ha sido profundo y repetido, se puede acumular nitrógeno disuelto en los tejidos (nitrógeno residual). Durante el ascenso, ese nitrógeno puede liberarse y dar síntomas de descompresión, que en algunos casos pueden ser graves. En general, se recomienda no volar en las 24 h siguientes a la práctica del buceo, y aumentar este tiempo en caso de inmersiones que hayan requerido paradas de descompresión. Existen tablas y ordenadores que ayudan a determinar el nitrógeno residual y el tiempo de espera recomendable53-56.
Humedad en la cabina y deshidratación
Como ya se ha mencionado, la humedad en cabina suele ser menor del 10-20%12. Esto puede originar sequedad cutánea y molestias oculares, orales y nasales. La sequedad producida por un viaje de larga duración también puede resultar significativa en pacientes con bronquiectasias. Si la irritación nasal es muy acusada, se recomienda emplear un spray de suero salino hipertónico1.
Limitación de movimientos
La inmovilidad prolongada, especialmente en sedestación, contribuye a la acumulación de sangre en las piernas, lo que puede originar hinchazón, tirantez y molestias en las extremidades inferiores. A su vez, la inmovilidad puede favorecer el desarrollo de trombosis venosa profunda (TVP)1.
Aspectos psicológicos
Para algunos sujetos, el entorno de los aviones y el vuelo en sí mismo desencadenan una mayor ansiedad, que puede favorecer la percepción exagerada de algunos síntomas respiratorios o contribuir al deterioro de algún trastorno respiratorio previo.
Evaluación de enfermedades respiratorias
A la luz de la información actual, es difícil establecer unas recomendaciones definitivas. De hecho, existe una gran disparidad en los procedimientos seguidos para la evaluación de enfermos respiratorios. En una revisión de 109 solicitudes de oxígeno en vuelo, sólo en un 61% de los casos se aportaba información sobre la oximetría o los resultados espirométricos7. Por otra parte, una encuesta realizada en 1997 a médicos especialistas en sistema respiratorio de Gales e Inglaterra mostró que seguían criterios muy dispares para indicar oxígeno en vuelo57.
En cualquier caso, para establecer un consejo médico sobre el riesgo de viajar en avión se debería considerar el tipo, la reversibilidad y el grado de afectación funcional ocasionado por la enfermedad del paciente y evaluar la tolerancia a la altitud de vuelo prevista y la duración de la exposición.
Evaluación clínica básica
Aunque es posible que todo paciente con alguna enfermedad respiratoria crónica se beneficie de una evaluación clínica previa a la realización de un viaje en avión, ésta debería considerarse obligada en aquellas situaciones que se reflejan en la tabla I. En este examen preliminar, se deberían considerar los siguientes procedimientos:
- Anamnesis. En la que se prestará especial atención al reconocimiento de toda la patología cardiorrespiratoria del paciente, con máximo interés en la comorbilidad asociada que pueda empeorar en relación con la hipoxemia (enfermedad cerebrovascular, cardiopatía isquémica, insuficiencia cardíaca). También resulta importante evaluar la disnea y otros síntomas respiratorios del paciente y recopilar las experiencias previas en otros vuelos.
- Medida de la saturación de oxihemoglobina por pulsioximetría o realización de una gasometría arterial basal58, después de un período de reposo suficiente que garantice la estabilidad del registro. Si existe una sospecha clínica de hipercapnia, es obvio que debería efectuarse una gasometría.
- Espirometría forzada59,60 y determinación del factor de transferencia de monóxido de carbono (TLCO) por single-breath61.
- Prueba de la caminata. Los departamentos médicos de algunas compañías aéreas proponen la caminata de 50 m como forma de valoración de la tolerancia al vuelo. En la misma, se trata de verificar si el paciente es capaz de caminar 50 m sin limitación por disnea7. Aunque es un procedimiento grosero, que no ha sido adecuadamente validado, permite efectuar una estimación de la reserva cardiorrespiratoria, al evaluar el incremento de la ventilación y del gasto cardíaco en respuesta al ejercicio.
En principio, no existe razón alguna para emplear la prueba de la caminata de 50 m en lugar de la prueba de la caminata de 6 min, que se utiliza de forma habitual en muchos enfermos respiratorios y está adecuadamente estandarizada62. Se deberían considerar criterios de alarma la incapacidad del paciente para mantener la marcha durante los 6 min, una distancia recorrida menor de 150 m o el desarrollo de disnea intensa (puntuación en la escala de Borg superior a 5)36.
- Prueba de ejercicio cardiorrespiratorio progresivo. No se recomienda en la evaluación sistemática de todos los enfermos, aunque podría resultar útil si la prueba de simulación hipóxica resulta dudosa. En pacientes con EPOC moderada-grave, se ha comprobado que un consumo de oxígeno (V'O2) pico mayor de 12,1 ml/min/kg se asocia con una PaO2 > 50 mmHg durante el vuelo63. En otro estudio en 18 pacientes con EPOC grave36 también se confirmó la relación entre el V'O2 pico y la PaO2, tanto en la primera como en la cuarta hora de vuelo. De hecho, en un análisis multivariante se seleccionaron como predictores independientes de la PaO2 en la primera hora de vuelo la PaO2 a nivel del mar y el V'O2 pico. Sin embargo, la PaO2 en la cuarta hora de vuelo sólo dependía del V'O2 pico como variable independiente36.
Identificación de enfermos de riesgo
La información recogida en los procedimientos anteriores debería permitir identificar a aquellos pacientes que no deben volar (tabla II) y aquellos en los que la hipoxemia desarrollada en el avión puede resultar peligrosa.
En general, se acepta que no deben viajar en avión los enfermos con insuficiencia respiratoria aguda. Tampoco deben hacerlo los pacientes con tuberculosis bacilífera. En el caso de pacientes con serología negativa frente al virus de inmunodeficiencia humana (VIH), sería necesaria la realización de tratamiento antituberculoso efectivo durante al menos 2 semanas. En los pacientes con serología del VIH positiva, se deberían exigir 3 tinciones de esputo negativas o un cultivo de esputo negativo durante la realización del tratamiento. Los pasajeros con síntomas respiratorios que procedan de áreas con transmisión local del SARS tampoco deberían volar, al igual que los contactos de casos probables o confirmados de SARS, con un tiempo de exposición menor de 10 días. Presentar un neumotórax no drenado, enfisema subcutáneo o mediastínico, una contusión pulmonar o la realización de un procedimiento de cirugía torácica mayor en las 2 semanas previas también se considera una contraindicación respiratoria para los viajes en avión.
Para la selección de los pacientes con riesgo de desarrollar una hipoxemia grave, la mayoría de las normativas vigentes hasta la fecha consideran únicamente los valores obtenidos mediante la pulsioximetría o gasometría arterial basal7,9-17. De hecho, una PaO2 > 70 mmHg o una SpO2 > 95% se suele considerar adecuada para el vuelo en la mayoría de los casos64,65.
Sin embargo, en los últimos años se ha demostrado que los criterios de selección basados sólo en la PaO2 o en la SpO2 son insuficientes. A modo de ejemplo, en un estudio se determinó la hipoxemia en vuelo de un grupo de pacientes con EPOC, que tenían una PaO2 en reposo mayor de 70 mmHg, sin hipercapnia y con un volumen espiratorio forzado en el primer segundo (FEV1) menor del 50% de su valor de referencia63. Un 53% de estos enfermos tenía una PaO2 < 55 mmHg a 2.438 m de altitud y un 33% una PaO2 < 50 mmHg63. Todavía resultaba más llamativo que un 86% de los pacientes tenía una PaO2 < 50 mmHg cuando realizaban un ejercicio de baja intensidad, similar a la necesaria para deambular por el pasillo del avión o ir al baño63. Hallazgos similares también se han confirmado en pacientes con enfermedades intersticiales35.
En la figura 4, se representa el algoritmo de actuación propuesto. En aquellos pacientes que utilicen oxigenoterapia domiciliaria, se recomienda aumentar el flujo de oxígeno durante el vuelo, habitualmente en 1-2 l/min. En los restantes pacientes, se debería realizar una estimación de la hipoxemia en vuelo si tienen una PaO2 < 70 mmHg o una SpO2 < 93%, si el FEV1, la capacidad vital forzada (FVC) o el TLCO son menores del 50% de su valor de referencia o si existen otros factores de riesgo adicionales (tabla III).
Fig. 4. Algoritmo propuesto para la evaluación de la necesidad de suplemento de oxígeno durante el vuelo en pacientes con enfermedades respiratorias crónicas.
Estimación del grado de hipoxemia durante el vuelo
A partir de la magnitud de la hipoxemia alcanzada por sujetos sanos durante viajes en avión, se ha considerado de forma arbitraria que una PaO2 > 50-55 mmHg se podría considerar aceptable9-13. Por tanto, resulta importante estimar la PaO2 durante el vuelo, puesto que cuando resulte menor de 50 mmHg, se recomienda un suplemento de oxígeno en vuelo35.
Existen dos posibilidades para estimar la PaO2 en altitud: las ecuaciones de predicción y la prueba de simulación hipóxica.
Ecuaciones de predicción. Se han desarrollado diversas ecuaciones para predecir la PaO2 durante el vuelo a partir de determinaciones realizadas a nivel del mar (tabla IV)13,66-72. Algunas de ellas67,70 permiten determinar la PaO2 a cualquier altitud a partir de los valores obtenidos a nivel del mar (fig. 5).
Fig. 5. Normograma para la determinación de la PaO2 estimada durante el vuelo a partir de la PaO2 a nivel del mar y de la altitud. Tomado de Gong et al67.
En la mayor parte de los casos, las ecuaciones se han establecido en pacientes con EPOC y las medidas de la PaO2 en altitud se efectuaron en cámaras hipobáricas o después de una simulación de altitud, mediante la respiración de una FIO2 del 15%. Su precisión mejora cuando incorporan medidas del FEV128,66 o del FEV1/FVC69. Además, alcanzan una mayor precisión cuando se aplican a pacientes con EPOC que tienen un FEV1 menor del 60% del valor de referencia.
Pese a su simplicidad y amplia disponibilidad, las ecuaciones de estimación de la hipoxia en vuelo plantean algunos inconvenientes. El más importante viene dado por la considerable amplitud de sus límites de confianza al 90%, que son de ± 7,5 mmHg, debido, sobre todo, a que se han calculado a partir de muestras muy reducidas. Resulta llamativo que en 18 pacientes con EPOC grave, se han detectado diferencias entre la PaO2 real en vuelo y la PaO2 estimada por la ecuación de Gong et al67 de -6 ± 6 mmHg (rango = -15 a 6 mmHg)36.
Casi en su totalidad, se han obtenido de series de varones sanos o con EPOC, por lo que se desconoce su exactitud en mujeres. Tampoco consideran la duración del vuelo ni las condiciones de la cabina. Además, no se han validado con otra prueba hipóxica repetida después de la realizada para obtenerlas. Es posible que aquellas ecuaciones que incluyen el FEV1 subestimen la gravedad de la hipoxemia desencadenada por la altitud en pacientes hipercápnicos69, puesto que algunos autores han demostrado una relación inversamente proporcional entre la PaO2 en altitud y la presión parcial de anhídrido carbónico (PaCO2) a nivel del mar63. En este mismo sentido, las ecuaciones que emplean el FEV1 o el cociente FEV1/FVC en sujetos sanos probablemente sobreestimen la PaO2 en altitud73. También es probable que deba considerarse la causa que lleva a la hipoxemia. Así, por ejemplo, la hipoxemia secundaria a shunt se afecta muy poco por la exposición a la altitud, mientras que la secundaria a un desequilibrio ventilación/perfusión resulta muy dependiente de la PIO274,75.
Recientemente, se ha desarrollado una ecuación de predicción específica para pacientes con trastornos restrictivos, en la que se incluye el factor de transferencia de CO71, así como otra aplicable a pacientes con EPOC o enfermedad intersticial72. También, en los últimos años, se han desarrollado estimaciones que incorporan la PaCO2, tanto en sujetos sanos como en pacientes con EPOC70.
A la luz de los datos actuales, la ecuación de Muhm70 sería la más recomendable en sujetos sanos y pacientes con EPOC, mientras que la de Christensen et al71 sería la aconsejable en enfermos con trastornos restrictivos.
Prueba de simulación hipóxica. Aunque la prueba ideal para estimar el grado de hipoxemia durante un vuelo comercial es la hipoxia hipobárica, no resulta posible efectuarla en la práctica clínica habitual por la limitada disponibilidad de centros con cámaras hipobáricas (apéndice II). Como alternativa, se recomienda recurrir a la simulación hipóxica isobárica, descrita inicialmente por Gong et al67. Esta prueba asume que la respiración de una mezcla de gas hipóxico a nivel del mar (hipoxia normobárica) simula la hipoxia hipobárica característica de la altitud69. La altitud máxima de presurización de la cabina (2.438 m) puede simularse por la respiración de una mezcla del 15% de oxígeno en nitrógeno.
No se requiere una preparación específica para la prueba. Se recomienda realizarla sin que el paciente interrumpa su medicación habitual, tratando de no inducir cambios en la dosis ni en los intervalos de la medicación69.
Una vez que el paciente se encuentre sentado, es posible hacerle respirar la mezcla de gas hipóxico mediante una bolsa de Douglas, una cabina pletismográfica o una mascarilla tipo Venturi.
La modalidad más clásica y sencilla consiste en pedirle al sujeto que respire la mezcla de gas contenido en una bolsa de Douglas de 30-100 l, que se rellena desde cilindros presurizados con un 15% de oxígeno y nitrógeno como balance. En este caso, los pacientes pueden respirar a través de una boquilla, con pinza nasal, o a través de una mascarilla facial con una válvula antirreinhalación7,14.
La segunda opción consiste en llenar una cabina pletismográfica sellada con esa mezcla de gas (15% de oxígeno en nitrógeno), que se puede mantener constante introduciendo oxígeno o nitrógeno por un puerto comunicante. Este procedimiento tiene la ventaja de no necesitar mascarilla ni pieza bucal76 y, además, permite titular el flujo de oxígeno necesario para corregir la hipoxemia, mediante la administración de oxígeno por gafas nasales dentro del entorno hipóxico de la cabina. Sin embargo, mientras el paciente permanece en la cabina pletismográfica no es posible obtener muestras de sangre arterial, por lo que la monitorización se limitaría a la SpO2.
Como tercera posibilidad, se propone utilizar una mascarilla tipo Venturi en la que como gas conductor se sustituye al oxígeno por nitrógeno. Se ha comprobado con diferentes dispositivos que un sistema Venturi al 35% genera una fracción inspirada de oxígeno del 16%, mientras que al 40% origina una fracción inspirada de oxígeno del 14%, tanto en sujetos sanos como en pacientes con EPOC73. Sin embargo, es necesario recordar que no todos los modelos comerciales basados en el principio Venturi son capaces de administrar oxígeno con un error menor del 1%, como se establece en sus especificaciones. Además, la FIO2 puede disminuir si el flujo inspiratorio del paciente excede el flujo total generado por el aparato. Aunque su papel es menor, el espacio muerto de la mascarilla también afecta a la concentración de oxígeno suministrada72. También es necesario considerar que el nitrógeno es un 14% menos denso que el oxígeno, por lo que su capacidad de arrastre de aire a través del sistema Venturi es menor que la del oxígeno, con lo que el grado de precisión alcanzado en la FIO2 será menor77. Por todo ello, parece razonable aconsejar que si se opta por este sistema para la administración de la mezcla de gas hipóxico se realice simultáneamente una monitorización de la FIO2.
Durante la prueba, se le pedirá al paciente que respire a volumen corriente y se finalizará a los 20 min67,69 o cuando se alcance un estado estable, definido por la no variabilidad de la SpO2 (± 2%) ni de la frecuencia cardíaca (± 5 lpm) durante al menos 2 min67.
Se recomienda una monitorización continua de la saturación de oxihemoglobina mediante pulsioxímetro y la realización de una gasometría arterial antes y al finalizar la prueba. En cuanto a la pulsioximetría no debe olvidarse que puede sobreestimar ligeramente la oxigenación real en fumadores, puesto que no discrimina entre oxihemoglobina y carboxihemoglobina78. Además, la mayoría de los pulsioxímetros presentan cierto grado de imprecisión y variabilidad en el rango de saturación entre el 88 y el 92%79. Por tanto, la SpO2 sólo debería emplearse para el control de la prueba, pero su interpretación debería considerar la PaO2.
La prueba de simulación hipóxica proporciona, tanto en sujetos sanos como en pacientes con EPOC, una medida comparable a las obtenidas simulando la misma altitud en una cámara hipobárica69. La relación entre la hipoxia isobárica y la hipoxia hipobárica no resulta condicionada por la edad ni el genéro de los sujetos69. A su vez, también se ha demostrado que existe una buena correlación entre la PaO2 obtenida durante la simulación hipóxica y la determinada en vuelo32, aunque esta relación empeora cuando el intervalo entre ambas es superior a 4 meses32.
En cuanto a su seguridad, la tolerancia de la simulación hipóxica es buena, describiéndose únicamente efectos secundarios muy leves como taquicardia, disnea, vértigo o mareo, cefalea y somnolencia67.
La simulación hipóxica ofrece ciertas ventajas con respecto a las ecuaciones de predicción. Proporciona una valoración más precisa de la respuesta individual a la hipoxia. Además, permite evaluar posibles efectos de la hipoxia, tales como síntomas o alteraciones electrocardiográficas. Aunque los estudios iniciales realizaban monitorización continua de electrocardiograma (ECG)67,69, se identificaron muy pocas arritmias relacionadas con la hipoxia, todas ellas de naturaleza benigna, por lo que en la actualidad no se recomienda la monitorización ECG de forma sistemática7. Quizá se podría considerar de forma individual en los pacientes con comorbilidad cardiovascular asociada.
Pese a todo, la simulación hipóxica es un procedimiento que también presenta limitaciones80. No se reproducen las condiciones de la cabina (presión ni densidad del aire). Sin embargo, para que la disminución de la densidad del aire o de la turbulencia del flujo origine un incremento del FEV1 o reduzca el trabajo respiratorio, se requieren alturas superiores a 3.000 m81, por lo que no es previsible que tengan una gran influencia. Además, el posible efecto beneficioso originado por la disminución de la densidad del aire nunca será mayor que el efecto negativo ocasionado por la disminución en la PIO2, el incremento de la distensibilidad pulmonar, del atrapamiento aéreo y de la mala distribución de la ventilación80,82.
Durante la simulación hipóxica tampoco se considera la duración del vuelo. Sin embargo, recientemente se ha analizado la evolución de los gases arteriales durante un vuelo de 5 h en pacientes con EPOC36. Se ha comprobado que, cuando los pacientes permanecen sentados, se produce una caída de la PaO2 al alcanzar la altura de crucero y que, a partir de ese momento, la PaO2 permanece estable durante el resto del vuelo36.
La aplicación de estas recomendaciones en niños con enfermedades respiratorias resulta más controvertida. Existe poca información sobre el comportamiento fisiológico de los niños en altitud. Además, el espectro de enfermedad puede resultar muy amplio. En los niños prematuros con infección respiratoria viral aguda, existe un mayor riesgo de apneas por la inmadurez del patrón respiratorio. En este caso, la hipoxia ambiental puede aumentar el riesgo de apnea, por lo que se recomienda que no vuelen hasta 6 meses después de la fecha prevista para el parto a término. Por otra parte, algunos niños con fibrosis quística están mejor adaptados al ambiente hipóxico, probablemente por cambios en las características de disociación de la hemoglobina. En función de lo anterior, la recomendación actual considera que niños con un FEV1 menor del 50% de su valor de referencia por fibrosis quística u otra enfermedad pulmonar crónica deberían ser sometidos a una prueba de simulación hipóxica y que si la SpO2 < 90% durante la prueba, se debería prescribir oxígeno en vuelo7,83. En niños, la vía de administración de la mezcla hipóxica más recomendable es la respiración dentro de una cabina pletismográfica.
Prescripción de suplemento de oxígeno en vuelo
Se considera que aquellos pacientes con una PaO2 estimada en vuelo < 50 mmHg por ecuaciones de predicción, o preferiblemente por una prueba de simulación hipóxica, deberían recibir oxígeno suplementario en el avión (fig. 6)9,76. El criterio seguido para la elección de este punto de corte resulta arbitrario67. Puesto que las personas sanas pueden alcanzar una PaO2 55-60 mmHg a la altitud de cabina35, se consideró que 50 mmHg representaría el límite inferior de la PaO2 clínicamente aceptable67. Por tanto, este punto de corte se basa en una decisión de consenso de expertos, pero no existe un soporte científico para el mismo35.
Fig. 6. Algoritmo para la interpretación de la prueba de simulación hipóxica.
Los enfermos con una PaO2 estimada > 55 mmHg podr&iacut e;an volar sin precisar oxígeno suplementario. Por último, el grupo de pacientes con una PaO2 estimada entre 50 y 55 mmHg deberían ser evaluados de forma individual. En este caso, si existe un deterioro grave de la función pulmonar basal, una acusada limitación al ejercicio, tanto en la prueba de la caminata como en la prueba de ejercicio cardiorrespiratorio progresivo, o comorbilidad asociada, también se podría recomendar el aporte de oxígeno durante el viaje en avión (fig. 6).
Fig. 7. Algoritmo simplificado para la prescripción de oxigenoterapia en vuelo a pacientes con enfermedad pulmonar obstructiva crónica (EPOC).
El suministro de oxígeno en vuelo se realiza mayoritariamente con gafas nasales. En pacientes con EPOC grave sometidos a condiciones de hipoxia hipobárica similares a las de la cabina de un avión comercial, se ha comprobado que la administración de oxígeno por gafas nasales a 3 l/min produce un mayor aumento de la PaO2 que cuando se suministraba mediante una mascarilla tipo Venturi al 24 o al 28%84. De hecho, los sistemas Ventimask pueden favorecer la dilución del aire ambiente a flujos relativamente bajos85.
Un flujo de oxígeno de 2 l/min parece suficiente para corregir la hipoxemia en la mayoría de las ocasiones. En sujetos sanos y pacientes con alteraciones obstructivas o restrictivas que respiraban una FIO2 ambiental del 15%, se comprobó que la administración de oxígeno con gafas nasales a 2 l/min lograba alcanzar una SpO2 similar a la registrada cuando respiraban una FIO2 del 21%76. En trastornos restrictivos, un flujo de 2 l/min también parece suficiente para mantener una adecuada oxigenación durante el vuelo, aunque cuando el paciente se mueve por el avión, podría resultar aconsejable aumentar el flujo a 4 l/min, siempre y cuando exista la posibilidad de utilizar un prolongador71.
Por último, se debería considerar que el suplemento de oxígeno constituye un procedimiento seguro y efectivo para el control de muchos enfermos respiratorios crónicos durante la realización de viajes en avión41,65,84. A modo de ejemplo, recientemente se ha descrito que el suministro de oxígeno durante vuelos de hasta 13.000 km permitió llegar a su destino de forma satisfactoria a un grupo de pacientes con enfermedad pulmonar grave86. Únicamente, se registraron escasos episodios casi-sincopales por una oxigenación insuficiente al ir al baño sin oxígeno86.
Recomendaciones específicas en algunas enfermedades respiratorias
Enfermedad pulmonar obstructiva crónica
La EPOC y la necesidad de su tratamiento con oxígeno durante un vuelo es la causa más frecuente de consulta médica previa al inicio de un desplazamiento aéreo87. No obstante, nuestra respuesta en el momento actual no puede ser sólida y clara, ya que no existe la suficiente evidencia científica y muchos aspectos permanecen controvertidos.
En general, una primera recomendación ante un paciente con EPOC e hipoxemia sería que evitara el desplazamiento aéreo y que buscara otras vías de transporte. Esta indicación podría valer hace varias décadas, pero en la actualidad es insuficiente para muchos de los pacientes, ya que puede condicionar su calidad de vida y en algunos casos su actividad laboral. De hecho, una pequeña encuesta realizada en Estados Unidos sobre pacientes con EPOC grave mostró que aproximadamente 1 de cada 5 realizó un desplazamiento aéreo al año88. No obstante, estas cifras pueden no ser extrapolables a nuestro país, donde probablemente la proporción sea menor.
Al igual que sucede en otros trastornos, se admite que durante un vuelo los pacientes con EPOC deberían mantener un nivel de PaO2 superior a 50 mmHg13,35,89. Con este umbral no se han observado problemas en los estudios de simulación de hipoxemia y parece razonable dada la experiencia clínica acumulada en pacientes con EPOC y oxigenoterapia crónica domiciliaria (OCD). Sin embargo, este nivel es arbitrario y no existen estudios que hayan analizado su posible repercusión usando períodos más próximos a los habitualmente empleados en los vuelos aéreos, aunque la duración de los vuelos parece tener un menor efecto que la altitud alcanzada durante ellos29.
A pesar de su potencial impacto, se han descrito pocos estudios en la EPOC que aborden el problema de la hipoxemia en la altitud durante los transportes aéreos. Además, se han realizado sobre pequeñas muestras de pacientes, sin hipoxemia grave, la mayor parte eucápnicos y sin gran comorbilidad cardiovascular28,32,65,90,91. De ellos se desprende que los pacientes pueden tener descensos de la PaO2 de hasta 25 mmHg cuando alcanzan una altura de vuelo de 2.438 m (8.000 pies). Esta situación no es rara en los transportes aéreos habituales29 y, aunque la incidencia de problemas médicos parece mínima en la población general35,92, no ocurre lo mismo en la EPOC, donde la presencia de síntomas y el requerimiento de asistencia médica durante el vuelo son más prevalentes88. No obstante, la relevancia de estos eventos no parece importante y cuando lo es, suele tener un origen cardiovascular88,92. Aunque la interpretación de estos datos puede ser errónea por las limitaciones en su recogida, también es posible que la tolerancia de los pacientes con EPOC (sin otros factores que puedan alterar el transporte del oxígeno tales como cardiopatía o anemia) a la hipoxemia sea superior a la esperada.
Según los conocimientos actuales, se podría recomendar que todo paciente con EPOC moderada-grave que desee realizar un desplazamiento aéreo debería ser valorado clínicamente, incidiendo en los siguientes aspectos: a) descartar que no presente una exacerbación o que se encuentre en una fase precoz de recuperación de ésta; b) el tratamiento que realiza, y c) reducir la comorbilidad concomitante. Una vez que se ha comprobado su estabilidad clínica y optimizado su tratamiento, se le debería realizar una gasometría arterial y una espirometría en los días previos al vuelo. Las cifras de PaO2 obtenidas deben ajustarse al nivel del mar y esto en algunas zonas de nuestro país puede suponer un incremento de hasta 10 mmHg.
Con objeto de simplificar la evaluación, se podría recomendar el siguiente sistema de actuación ante la presencia de hipoxemia (fig. 7):
1. PaO2 > 70 mmHg. En general, no van a presentar hipoxemia hipobárica grave por lo que la estimación de la PaO2 en vuelo no es necesaria de forma sistemática. No obstante, se debe valorar la existencia de síntomas (disnea o dolor torácico) durante vuelos previos y recomendar soporte de oxígeno a flujos bajos (1-2 l/min) si éstos han estado presentes. También parece prudente, hacer extensible esta opción terapéutica a aquellos casos en los que la presión en cabina durante el vuelo sea superior a los 2.438 m (8.000 pies) y coexistan formas muy graves de EPOC (FEV1 ≤ 30%), que pueden tener más limitaciones en los mecanismos de compensación de la hipoxemia o enfermedades que alteren el transporte de oxígeno.
2. PaO2 = 60-70 mmHg. Se debería realizar una estimación de la PaO2 en vuelo mediante fórmula o preferiblemente mediante simulación hipóxica. Se recomienda la prescripción de oxígeno a bajo flujo en las siguientes situaciones:
PaO2 estimada durante el vuelo menor de 50 mmHg.
- Vuelos en los que la presión en el interior de la cabina sea superior a 1.859 m (6.000 pies).
- Presencia de comorbilidad cardiovascular y/o anemia.
3. PaO2 < 60 mmHg. Estos pacientes ya se encuentran habitualmente recibiendo OCD. Se tratará de mantener sus mismos niveles de oxígeno durante el vuelo, para lo que será necesario incrementar en 1-1,5 l/min su soporte de oxígeno habitual. Esto no debiera generar problemas en los pacientes con EPOC eucápnicos, donde se ha observado una tendencia a la hipocapnia por hiperventilación. Pero si existe hipercapnia sería recomendable un estudio previo de iación del intercambio de gases tras incrementar el aporte de oxígeno.
Es importante remarcar que los pacientes que no están en programas de OCD tienen una menor sensación de gravedad de su enfermedad y un porcentaje importante puede no consultar al médico para realizar un viaje aéreo88. Debe implementarse un mayor desarrollo de la educación terapéutica en este sentido.
Junto a la planificación prevuelo condicionada por las cifras de la PaO2, existen otras indicaciones generales para evitar el deterioro de la hipoxemia, como son:
- Evitar grandes esfuerzos físicos: no cargar peso y reservar un asiento cerca de las áreas de servicio. No obstante, esto no debe ser una contraindicación para la necesaria movilización de las extremidades inferiores como prevención de la TVP.
- Evitar el sueño.
- No realizar comidas copiosas.
Sería aconsejable que las compañías aéreas dispusieran de personal entrenado que pudiera controlar periódicamente, mediante pulsioximetría, el nivel de oxígeno de los pacientes que precisan oxígeno durante el vuelo (niveles de SpO2 entre el 85 y el 93% podrían ser adecuados). Además, podría ayudar a detectar alteraciones en el ritmo cardíaco, que, aunque raras, tienen una importante variabilidad individual93. Esta monitorización es imprescindible si el paciente realiza un desplazamiento urgente en una situación de inestabilidad clínica.
A la espera de nuevos estudios que mejoren las importantes limitaciones de nuestros conocimientos, el mensaje global es que se debe aconsejar a todos los pacientes con EPOC que sean valorados por su neumólogo si van a realizar un desplazamiento aéreo. Se debe suplementar con oxígeno a aquellos enfermos cuya PaO2 estimada durante el vuelo sea inferior a 50 mmHg, teniendo especial precaución en aquellos con comorbilidad cardiovascular concomitante.
Infecciones
Los vuelos comerciales son un entorno apropiado para la expansión de patógenos transportados por pasajeros o por el personal de vuelo como quedó puesto de manifiesto durante el último brote de SARS. Son pocos los estudios y datos que hay sobre este tema y no es fácil cuantificar globalmente su repercusión, posiblemente infravalorada, ya que la práctica totalidad de las enfermedades implicadas tienen un período de incubación menor a la duración del viaje, algunas de estas enfermedades son tratadas como procesos banales y en los estudios realizados existe una proporción significativa de pasajeros ilocalizables94. Las Regulaciones de Salud Internacional adoptadas a nivel mundial en 1969 para limitar la expansión de enfermedades están siendo revisadas95,96. Recientemente la Organización Mundial de la Salud (OMS) ha publicado una normativa acerca de las infecciones y los vuelos aéreos97.
Factores de riesgo. Las infecciones respiratorias que han sido objeto de mayor interés son la tuberculosis pulmonar, el SARS y las producidas por los virus influenza. Estos gérmenes se transmiten fundamentalmente por vía aérea, por lo que además de las características patógenas, la epidemiología de la infección en cada zona y las condiciones inmunitarias del sujeto, el peligro de transmisión durante los viajes aéreos está condicionado por su duración, la proximidad al caso índice y la ventilación de la cabina.
La utilización de filtros adecuados y la correcta renovación del aire en el avión disminuyen el riesgo de infección. Aunque se ha cuestionado la seguridad de los HEPA frente a los virus98, es más grave el hecho de que no existe una legislación que obligue a su utilización en la mayoría de los países. El 15% de los vuelos con más de 100 pasajeros realizados en Estados Unidos no llevaba filtros HEPA y esta cifra es considerablemente mayor en los aviones más pequeños que realizan trayectos regionales99.
De los casos estudiados y de investigaciones mediante modelos matemáticos se desprende que los individuos que estén sentados en cualquiera de las dos filas de asientos próximos al pasajero afectado son los que sufren el mayor riesgo de transmisión de Mycobacterium tuberculosis y que si se duplica la ventilación, disminuye el riesgo a la mitad. La probabilidad de contagio también disminuye a casi cero en pasajeros sentados a 15 filas de la zona de infección100,101. Sin embargo, esta "distancia de seguridad" no sirve en el caso de un paciente con SARS que podría contagiar a cualquier otro viajero sano que se encuentre sentado en las 7 filas siguientes102.
Las investigaciones de la OMS no han demostrado que la recirculación del aire por sí misma facilite la transmisión de enfermedades infecciosas a bordo del avión, aunque debe asegurarse su funcionamiento adecuado y continuo mientras haya personas a bordo, independientemente de que el avión esté en vuelo o detenido en las pistas. Un funcionamiento inadecuado del sistema de ventilación de la cabina favorece el contagio103.
Recientemente se ha solicitado desde revistas científicas, así como en medios de opinión general, que se considere seriamente las regulaciones sobre los filtros HEPA e incremente el número de revisiones a los aviones realizadas por las autoridades104,105.
Tuberculosis. Un tercio de la población mundial está infectada por Mycobacterium tuberculosis, por lo que es el modelo de transmisión más estudiado durante los viajes aéreos. Existen evidencias de que la transmisión desde personas bacilíferas es más frecuente durante vuelos largos (más de 8 h) y puede afectar tanto a los pasajeros como a miembros de la tripulación.
Se han estudiado 7 episodios de posible transmisión de tuberculosis durante viajes aéreos, 2 de ellos con cepas resistentes a isoniacida y rifampicina. En sólo 2 de estos episodios se ha podido establecer una posible transmisión de la infección (conversión del Mantoux) al resto de pasajeros o a los miembros de la tripulación, aunque en ningún caso se ha podido demostrar el desarrollo de la enfermedad como resultado de la exposición en un vuelo comercial94,106. En el resto, los estudios no evidenciaron transmisión107, no fueron concluyentes108,109 o la posibilidad de transmisión fue considerada muy baja110. En todos los casos el paciente índice tenía importante afectación radiológica y las tinciones de esputo demostraron bacilos ácido-alcohol resistentes con cultivos de esputo positivos.
A pesar de que la adquisición de la enfermedad y posiblemente la transmisión de la infección es menos probable que en otros medios de transporte, se ha generado gran ansiedad entre la población, autoridades sanitarias y las compañías aéreas, por lo que la OMS ha publicado una normativa con un protocolo de actuación que concluye con una serie de recomendaciones para los pasajeros, médicos, autoridades sanitarias y compañías aéreas (apéndice III)111.
Síndrome respiratorio agudo grave. El brote epidémico del SARS, cuyo agente etiológico es un coronavirus, es el ejemplo más reciente y representativo de una enfermedad transmitida por un escaso número de viajeros a otros países y continentes en pocas semanas112.
En 5 de los 40 vuelos investigados que transportaron pacientes infectados por el virus SARS, se consideró que existió probablemente transmisión del virus a otros pasajeros102,113-116. La mayoría de los pasajeros que adquirieron la infección se habían sentado en las 5 filas más próximas al caso índice, aunque al menos en un vuelo de una duración de 3 h (Hong Kong-Pekín) se produjo un brote que afectó a un alto porcentaje de pasajeros hasta una distancia de 7 filas y posteriormente a más de 300 casos secundarios102. Se han buscado posibles explicaciones para este brote y aunque no ha habido resultados concluyentes, se ha especulado con un predominio de la transmisión aérea sobre el contacto directo o indirecto, que parte de los pasajeros estuvieran infectados previamente a la realización del viaje o a un funcionamiento deficiente en la ventilación de la aeronave. El personal auxiliar de vuelo podría tener un riesgo superior en la adquisición de la enfermedad dada su movilidad por el avión102.
La OMS elaboró una serie de recomendaciones y normas, entre las que figuraba una serie de medidas que debían ser seguidas por todos los países (apéndice IV)114,115. Tras su puesta en marcha no se identificaron nuevos casos de propagación de la enfermedad a distancia101.
Influenza. La infección por el virus influenza A aparece en forma epidémica entre los meses de octubre a abril en el hemisferio norte y de mayo a septiembre en el hemisferio sur. En un reciente estudio realizado en Suiza, casi el 13% de los viajeros que sufrían un episodio febril durante un viaje a zonas subtropicales o tropicales poseía al regreso un título significativo de anticuerpos contra los virus gripales y en más del 6% se podía demostrar una seroconversión de más de 4 veces el título inicial. Fuera de los períodos epidémicos locales, los virus de la gripe eran los más frecuentemente implicados117. Esta fuente puede ser el origen de algunos de los brotes limitados en época no epidémica118,119. Otros virus como el influenza B y parainfluenza también han demostrado su capacidad patogénica120,121. Al igual que en los brotes epidémicos convencionales, existe una serie de factores de riesgo para la adquisición de la infección, como ser mayor de 65 años, presentar comorbilidades y tener un contacto estrecho con el caso índice, por lo que el turismo en grupo puede facilitar el contagio120.
A pesar de lo anteriormente comentado sólo se han documentado 3 estudios de contagio durante viajes aéreos103,118,121. Los pasajeros sentados en las filas más próximas al caso índice eran los que se afectaban con mayor frecuencia aunque dada la elevada capacidad infectiva del virus, en los vuelos de más de 3 h de duración podían enfermar entre el 25-70% del pasaje y hasta un 20% de los contactos familiares secundarios desarrollaron la enfermedad. La suspensión o avería en el sistema de ventilación favorece la transmisión de enfermedades como se demostró en un vuelo en el que un pasajero con gripe contagió al 72% de los pasajeros103.
Algunos países recomiendan la vacunación antigripal para aquellos viajeros que tengan como lugar de destino el hemisferio Sur durante los meses de verano, siempre que no hayan sido vacunados durante el año anterior122.
Otras transmisiones por vía respiratoria. Hay gérmenes que, a pesar de que no producen síntomas respiratorios o al menos no es su sintomatología principal, se transmiten por vía respiratoria. Entre ellos destaca por su contagiosidad y/o morbimortalidad el meningococo y el virus del sarampión.
Entre 1999-2001, se han estudiado 21 casos de pacientes con enfermedad meningocócica, que habían utilizado el avión durante el período de contagio sin demostrar ningún caso secundario. A pesar de ello, dada la gravedad de la enfermedad, se aconseja que las personas sentadas próximas al caso índice inicien profilaxis en las siguientes 24 h de la comunicación del caso, siempre que el tiempo desde el contacto haya sido inferior a 14 días101,123.
El virus del sarampión es altamente contagioso ya que desarrolla la enfermedad hasta el 80% de las personas expuestas y se han descrito algunos casos de transmisión durante viajes aéreos124-127. Actualmente el calendario vacunal de las diferentes comunidades autónomas incluye la vacuna para el meningococo a partir de los 2 años y para el sarampión a partir de los 15 meses, por lo que el riesgo de transmisión de estas enfermedades presumiblemente es irrelevante, aunque pudieran verse afectados ciudadanos de otros países no vacunados o sin anticuerpos.
No se han reportado brotes epidémicos producidos por los virus del catarro común, pero presumiblemente esta circunstancia se deba a la elevada frecuencia de la enfermedad y a las dificultades de su investigación101. En un estudio no se demostró que el sistema de recirculación del aire en la cabina del avión facilitara la aparición de síntomas de infección de vías altas128.
Actualmente, existe una gran preocupación por la posible propagación del virus de la gripe aviaria (H5N1). Este virus posee un menor período de incubación y un mayor grado de contagiosidad que el virus del SARS. Estados Unidos ha elaborado un plan nacional para evitar la propagación de brotes estableciendo una serie de medidas sanitarias específicas en los aeropuertos. Además de un incremento en el número de técnicos de salud, se han construido oficinas de salud que permitan evaluar el estado médico de los pasajeros y habitaciones de aislamiento para poder establecer una cuarentena en los aeropuertos internacionales. Estas oficinas están en contacto permanente con los Centers for Disease Control and Prevention (CDC) y tienen acceso a los registros de cada vuelo con el fin de facilitar los contactos de un posible caso índice129.
Hasta el momento, no se han demostrado los beneficios de esta estrategia y es poco probable que evite o retrase una epidemia por importación de virus influenza o SARS130. La detección de enfermos en el aeropuerto de destino exclusivamente tendría repercusión sobre la detección de sujetos que hubieran desarrollado la clínica durante el vuelo y los contactos, por lo que su sensibilidad sería baja. La mayoría de los expertos defiende estrategias similares a las seguidas en el brote del SARS que incluyan controles para la detección de sujetos con clínica en el aeropuerto de partida con el fin de impedir el embarque de los sujetos enfermos131-134.
Si se confirmara un caso de infección por influenza aviaria, deben establecerse medidas de aislamiento similares a las seguidas en pacientes y contactos con SARS, iniciar tratamiento con inhibidores de la neuraminidasa de forma inmediata y en los contactos instaurar profilaxis con estos fármacos en las primeras 48 h. Si se dispusiera de una vacuna específica, debería administrarse de forma inmediata a los contactos135. La OMS ha establecido un plan global en el que se contemplan estos apartados136,137.
Recientemente, se ha elaborado una serie de recomendaciones y consideraciones sobre el manejo de la exposición a una enfermedad infecciosa durante un vuelo comercial101:
- Aunque las compañías de transporte de viajeros pueden negarse a transportar personas enfermas, no es posible realizar exploraciones sistemáticas para lograr detectar a estos viajeros enfermos.
- Es preciso realizar un diagnóstico precoz para establecer medidas para el resto de los pasajeros.
- Los gobiernos tienen autoridad legal para, de acuerdo con las leyes internacionales, establecer controles a los pasajeros con enfermedades transmisibles de declaración obligatoria.
- Las autoridades pueden establecer alertas de cuarentena a pasajeros que lleguen a sus aeropuertos.
- Los médicos deben identificar a aquellos sujetos que no tienen un estado de salud adecuado para realizar un viaje en avión e informar de cómo puede afectar el vuelo a su estado de salud.
- El mejor método es la prevención, y se debe aconsejar postergar el viaje.
- El lavado de manos reduce el riesgo de transmisión de enfermedades infectocontagiosas y debería ser una rutina habitual durante los viajes y siempre antes de comer.
- Cubrirse la nariz y la boca si estornuda o tose y lavarse después sus manos para proteger a los demás.
- En caso de un pasajero con sospecha de SARS en el avión, se debe proporcionar una mascarilla NIOSH N 95 y establecer una zona de aislamiento en el avión.
Fibrosis quística
Los pacientes con fibrosis quística han incrementado sus expectativas de supervivencia y calidad de vida, por lo que no es infrecuente que deseen ir de vacaciones e incluso desarrollar una vida laboral en la que se contempla el desplazamiento en avión.
Existen pocos estudios que hayan analizado las modificaciones que los vuelos comerciales desencadenan en enfermos con fibrosis quística. La estimación del grado de hipoxemia durante el vuelo genera algunas controversias en estos enfermos. Aunque en un estudio inicial realizado en un pequeño grupo de niños de 11-16 años, la prueba de simulación hipóxica predecía con gran sensibilidad y especificidad el desarrollo de desaturación durante el vuelo, estudios posteriores no han confirmado estos hallazgos138. Un trabajo del mismo grupo de investigadores con un mayor número de sujetos y duración del vuelo (8-13 h) contradecía estos hallazgos y demostraba que un FEV1 < 50% del valor de referencia identificaba mejor a los desaturadores que la prueba de simulación hipóxica83.
Sólo un pequeño porcentaje de los pacientes que experimentaron caídas de la SpO2 por debajo del 90% presentó síntomas y requirió oxígeno suplementario83. Sin embargo, hay que destacar que los pacientes incluidos en estos estudios estaban en situación estable, con enfermedad no muy evolucionada y edades inferiores a otros grupos de pacientes portadores de diferentes enfermedades cardíacas o respiratorias para los que caídas de la PaO2 por debajo de 50 mmHg obligan a instaurar oxigenoterapia durante el vuelo. Esto explicaría la mejor tolerancia a la hipoxia de los pacientes con fibrosis quística, confirmada tanto en exposiciones agudas en cámaras hipobáricas139 como durante la permanencia en altitud140. Además, en los pacientes con fibrosis quística, la prueba de simulación hipóxica resulta especialmente variable con el tiempo, pudiéndose modificar en pocas semanas141,142.
Por estas razones, en los pacientes con fibrosis quística la indicación de oxigenoterapia durante el vuelo no debería basarse de forma exclusiva en la prueba de simulación hipóxica, sino valorar además la situación clínica y el grado de obstrucción bronquial140. Otras recomendaciones a considerar por los pacientes con fibrosis quística que planifiquen un viaje aéreo se resumen en la tabla V.
Algunos autores han descrito un incremento de las exacerbaciones después de unas semanas de vacaciones141,142, relacionado con un peor control de la enfermedad. El correcto seguimiento del tratamiento y, sobre todo, de la fisioterapia mejora las condiciones en las que se realiza el vuelo de regreso y disminuye posibles complicaciones143.
Enfermedad tromboembólica venosa
La incidencia estimada de la enfermedad tromboembólica venosa (ETV) en la población general es de 1 por cada 1.000 personas y año144. La patogenia de la TVP, aún vigente, fue descrita por Virchow en 1856 y está basada en la tríada formada por la estasis de la circulación venosa, el daño vascular endotelial y la hipercoagulabilidad. Éstas concurren en situaciones adquiridas, transitorias o persistentes, o congénitas, denominadas factores de riesgo, presentes en aproximadamente el 75% de los pacientes con ETV145.
Los viajes prolongados se han asociado con un aumento de la incidencia de la ETV146 e incluidos en los listados de factores de riesgo147,148. En 1977, se acuñó el término "síndrome de la clase turista" después de la descripción de 8 casos de ETV tras un viaje en avión en clase turista149. Se quería resaltar con ello que el espacio reducido para el estiramiento de las extremidades inferiores durante un período prolongado reduce el retorno venoso favoreciendo la estasis de la circulación venosa150. Esta circunstancia no es exclusiva de los viajes en avión en clase turista. También ha sido descrita en clase business151 y en otros medios de locomoción, como automóviles o autobuses152, donde se mantengan, durante largos períodos, las extremidades inferiores flexionadas y en reposo.
Además de la estasis venosa, en los viajes en avión existe controversia sobre otros factores que podrían contribuir a la TVP, como la deshidratación, favorecida por la baja humedad de la cabina y en algunos casos incrementada por el efecto diurético de café o bebidas alcohólicas, y la hipoxia hipobárica propia de la cabina presurizada. La deshidratación podría predisponer a la TVP por hemoconcentración e hiperviscosidad, aunque esta hipótesis resulta controvertida. En estudios experimentales, se ha observado que la hipoxia hipobárica favorece la activación de la coagulación153,154 y la reducción de la actividad fibrinolítica fisiológica de las células endoteliales154, aunque estos resultados no se han reproducido en estudios posteriores155.
Incidencia y riesgo de enfermedad tromboembólica venosa. Los estudios realizados sobre incidencia y riesgo trombótico asociado a los viajes en avión de larga duración han sido metodológicamente muy heterogéneos y los resultados, dispares. Para pasajeros de riesgo trombótico alto, por la presencia de otros factores de riesgo adicionales, la incidencia de ETV parece elevada, del 3 al 5%156,157. En viajeros de riesgo bajo-moderado desciende a 0-1%157,158.
La mayoría de los eventos de ETV identificados fueron TVP asintomáticos que afectaban exclusivamente al territorio venoso sural, aunque el método de cribado utilizado en casi todos los estudios fue la ecografía venosa de compresión con o sin Doppler, lo que cuestiona los resultados por su limitada sensibilidad en el territorio distal. La influencia de otros factores de riesgo individuales parece decisiva para desencadenar la TVP159.
La incidencia de tromboembolia pulmonar (TEP) fue evaluada en estudios de cohortes160-162. Según datos recogidos en los aeropuertos de París entre 1984 y 1998160, la incidencia de TEP ha ido en aumento. Se han descrito diferencias significativas en la incidencia de TEP según la distancia recorrida, desde 0,01 casos por cada 106 de pasajeros en distancias inferiores a 5.000 km, hasta 4,8 casos por cada 106 en recorridos de más de 10.000 km161. En un estudio realizado en el aeropuerto de Madrid-Barajas también se han encontrado diferencias según la duración del vuelo162. En los vuelos de más de 8 h, la incidencia de TEP fue de 1,65 por 106 viajeros, en los de 6-8 h de 0,65 por 106 viajeros y en los de menos de 6 h no se produjeron casos de TEP. Por este motivo, un período de 6 h se ha considerado como el tiempo límite para aconsejar medidas generales de movilización periódica de las extremidades163.
El riesgo relativo de ETV es difícil de establecer dada la heterogenicidad de los estudios152,157,164. Considerando sólo los viajes en avión, el riesgo no es evidente (odds ratio = 1,3)164, por lo que no se podría concluir que son un factor de riesgo independiente. Sin embargo, en viajeros con factores de riesgo trombótico adicional la odds ratio se incrementa en todos los estudios, significando un riesgo de ETV 3-4 veces superior. Recientemente, se ha demostrado que la inmovilización originada por un vuelo de más de 8 h de duración incrementa algunos marcadores de activación de la coagulación en sujetos sin factores de riesgo trombótico, pero queda por establecer si ello supone un mayor riesgo de ETV165.
Medidas profilácticas. Para adoptar medidas profilácticas intervencionistas debe individualizarse e identificar la presencia de otros factores de riesgo trombótico venoso (tabla VI). Clasificar el nivel de riesgo como moderado o alto en estas circunstancias no está bien establecido. Parece razonable extrapolar el impacto de cada uno de estos factores en la ETV.
Medidas generales. Una adecuada hidratación, la movilización periódica de las extremidades inferiores y evitar mantener durante largo tiempo las piernas flexionadas son las medidas aconsejadas por la mayoría de los expertos. Éstas se recomiendan con carácter general para vuelos de más de 6 h de duración163.
Medias elásticas. En viajeros de riesgo trombótico alto, las medias elásticas, en general por debajo de la rodilla y con una presión de 15 a 30 mmHg, han demostrado ser eficaces para reducir la incidencia de ETV166-168, sin efectos adversos y con una buena tolerancia.
Profilaxis farmacológica. En pasajeros de riesgo trombótico alto, se han ensayado el ácido acetilsalicílico y heparinas de bajo peso molecular. Una dosis de 400 mg de ácido acetilsalicílico durante 3 días resultó ineficaz, provocando además molestias gastrointestinales en un 13% de los viajeros169. Por el contrario, se ha comprobado que una dosis única de enoxaparina, tanto terapéutica ajustada al peso como en dosis profiláctica de alto riesgo, aplicada 2-4 h antes del vuelo, reduce la incidencia de TVP sin reacciones adversas169.
Las conclusiones generales sobre ETV y viajes en avión se resumen en la tabla VII.
Insuficiencia respiratoria crónica
Hay pocos estudios referentes al impacto de los viajes aéreos en pacientes con enfermedades respiratorias que presentan insuficiencia respiratoria o trastornos graves de la regulación de la ventilación. En los viajes aéreos de estos pacientes, además de las características y de la duración del vuelo, hay que tener en cuenta: a) la duración total del viaje (tiempo de vuelo más esperas predecibles y riesgo de posibles imprevistos); b) el desplazamiento del aeropuerto al punto final de destino; c) los aspectos logísticos (como el suministro de oxígeno o la posibilidad de cargar las baterías del aparato o de la silla de ruedas durante el viaje y en el punto de destino), y d) la altitud del lugar de llegada y el tiempo de permanencia en él. La mayor parte de los pacientes, a pesar de la discapacidad, puede viajar a condición de preparar el viaje adecuadamente y procurar no dejar al azar ningún aspecto170.
En general, en los pacientes con oxigenoterapia domiciliaria, se recomienda incrementar el flujo de oxígeno 1-2 l durante el viaje en avión171. Además, es imprescindible conocer las condiciones de cada compañía aérea antes de emprender el vuelo, tanto en lo que se refiere al transporte y suministro de oxígeno como a los accesorios que necesite el paciente (silla de ruedas, ventilador) y la obligatoriedad o no de ir acompañado. Algunas compañías aceptan que el pasajero transporte pequeñas botellas de oxígeno (máximo dos botellas de menos de 0,5 m de largo y 250 mm de diámetro)172, pero otras compañías no aceptan el transporte de oxígeno, aunque permiten el uso de ciertos concentradores de oxígeno, según una regulación muy estricta, siempre que el usuario disponga de las baterías suficientes para todo el vuelo173.
Enfermedades restrictivas
Se describen casos de pacientes con cifoescoliosis o enfermedades neuromusculares en los que largos viajes aéreos precipitan el fallo cardíaco derecho174, presumiblemente en relación con la hipoxia mantenida durante el vuelo.
Desde un punto de vista teórico, en los pacientes con enfermedades restrictivas no hipercápnicas (por afectación del parénquima), que presentan riesgo de hipoxia durante el vuelo, estaría indicado el oxígeno para disminuir el impacto de la hipoxemia sobre la hipertensión pulmonar.
En los pacientes con enfermedades restrictivas que utilizan ventilación mecánica (por afectación extrapulmonar), es recomendable que lleven el aparato consigo durante el vuelo, aunque únicamente lo utilicen durante la noche. Es evidente que los pacientes con ventilación continua deben estudiar con detenimiento el viaje dado que deberán utilizar el ventilador durante el viaje y los desplazamientos.
Desde un punto de vista logístico es muy importante asegurar el equipaje de mano que podrá llevar el paciente, especialmente en lo que se refiere a la silla de ruedas, el ventilador y la batería de repuesto. En los pacientes con gran discapacidad, la mayoría de compañías aéreas exigen un acompañante y consideran que un acompañante puede cuidar a dos viajeros con discapacidad. El paciente también debe considerar el espacio físico que puede necesitar. Suele ser recomendable contactar directamente con la compañía aérea para valorar todas las necesidades del paciente175.
Síndrome de apneas-hipopneas durante el sueño
Hay pocas referencias en la literatura médica sobre el impacto de los viajes aéreos en pacientes con síndrome de apneas-hipopneas durante el sueño (SAHS). Algunas complicaciones se han asociado a viajes largos seguidos de estancia en altitud. Todos los enfermos con SAHS deberían evitar el consumo de alcohol inmediatamente antes y durante el vuelo. Los pacientes graves deberían utilizar presión positiva continua en la vía respiratoria (continuous positive airway pressure [CPAP]) durante vuelos de larga duración. Para ello, deben disponer de una batería seca que sirva de fuente de energía para su propio equipo.
Asma
Aunque la baja humedad del aire en la cabina de los aviones podría favorecer el desarrollo de broncospasmo por pérdida de agua de la mucosa bronquial, se ha considerado que las crisis asmáticas durante los vuelos resultaban poco frecuentes7. Además, a veces resulta difícil diferenciarlas de disnea por hiperventilación o pánico7. Más recientemente, se ha descrito una mayor incidencia de episodios de broncospasmo en vuelo, que llegaron a precisar tratamiento176.
Los pacientes con asma controlada y sin insuficiencia respiratoria no tienen problemas para volar, aunque deben asegurarse de disponer de su medicación a mano. Los pacientes con asma grave, con frecuentes exacerbaciones y crisis graves, deberían estar bien controlados antes del día del vuelo.
Desde 2004, la medicación de emergencia de la mayoría de los aviones incluye broncodilatadores, tanto en cartucho presurizado como en ampollas. No obstante, en caso de crisis, se recomienda que el paciente se administre su medicación de rescate habitual177.
Cáncer de pulmón
Los pacientes con tumores primarios o metastásicos generalmente pueden volar con seguridad. No obstante, puede resultar necesario considerar medidas para paliar la hipoxemia o el dolor.
Neumotórax
El neumotórax es una contraindicación para el vuelo. Sólo se aceptará al paciente para volar, cuando el pulmón se haya reexpandido por completo. No debería ser admitido para volar hasta 72 h después de retirado el drenaje pleural y con una radiografía realizada 48 h después de retirado el drenaje para confirmar la resolución del neumotórax7.
De forma opcional, algunas compañías aéreas pueden aceptar el transporte de un pasajero con un drenaje pleural. En este caso, como es difícil garantizar una aspiración continua durante el vuelo, se recomienda la colocación de una válvula de una vía de Heimlich12. Con carácter excepcional, puede resultar necesario evacuar un neumotórax durante el vuelo. Esto sólo debe realizarse por personal entrenado y cuando la presión de la cabina corresponda al nivel del mar12.
Traumatismos torácicos
Las fracturas costales simples no suelen plantear problemas durante el vuelo, sobre todo cuando no existe daño pulmonar ni una enfermedad pulmonar previa12. El principal problema asociado con las fracturas es el dolor, que puede reducir la ventilación. Por tanto, es importante garantizar la adecuada analgesia en vuelo. Fracturas múltiples pueden causar inestabilidad torácica y, en ese caso, se debería considerar la necesidad de un transporte especial.
En todo paciente con insuficiencia respiratoria aguda por una contusión pulmonar, el vuelo debería postergarse hasta que la función pulmonar resulte normal7,12. De igual modo, el enfisema mediastínico o subcutáneo constituye una contraindicación para la realización de vuelos comerciales12. En cualquiera de estas situaciones, si el transporte aéreo resulta imprescindible, se requiere una ambulancia aérea.
Cirugía torácica
Aunque se precisa una evaluación individual, como regla general se aconseja no volar hasta que hayan transcurrido al menos 2 semanas de la operación7.
Organización y logística
Los pacientes con enfermedades respiratorias que precisen oxígeno a bordo o requieran algún tipo de cuidados sanitarios durante el vuelo se consideran pasajeros enfermos que precisan autorización médica (caso MEDA). Todos los pacientes que comuniquen alguna de estas situaciones deben ser informados al realizar la reserva del vuelo del proceso que se sigue para obtener la autorización médica, de las limitaciones y requisitos existentes, del número de acompañantes requeridos y de la tarifa para el servicio solicitado. A su vez, deben cumplimentar el impreso INCAD/MEDIF proporcionado por la compañía (apéndice V), basado en las recomendaciones de la IATA, y remitirlo por fax al servicio médico de la compañía aérea para que autorice el vuelo y ponga en marcha el operativo correspondiente.
El suministro de oxígeno suele realizarse mediante mascarilla, aunque el paciente podría utilizar sus propias gafas nasales. En los aviones, se puede disponer de tres fuentes de oxígeno. Ante una despresurización, los pasajeros pueden recibir oxígeno a través de mascarillas insertadas encima de los asientos. Sin embargo, esta fuente de oxígeno, que tiene una duración limitada, no se puede emplear para la suplementación de oxígeno durante el vuelo de pacientes enfermos. Lo más habitual es recurrir a cilindros de 22 pies cúbicos, que a un flujo de 4 l/min pueden suministrar oxígeno durante 4 h80,178, por lo que resulta importante estimar el número de cilindros que necesitará un paciente en función del flujo prescrito y de la duración del viaje. Recientemente, el American Department of Transportation ha aprobado el empleo de concentradores de oxígeno portátiles, que permiten su uso durante el despegue y el aterrizaje y al moverse por la cabina. A su vez, pueden ayudar al paciente a desplazarse entre el avión y la terminal. Hasta la actualidad, sólo se han aprobado modelos fabricados por Inogen (www.inogen.net) y Airsep (www.airsep.com)33. Es importante considerar que la mayoría de las compañías aéreas no permiten el uso de oxígeno líquido a bordo. Si se desea transportar una mochila de oxígeno líquido, debe facturarse vacía y cargarla al llegar al destino.
En general, el oxígeno en vuelo se administra a flujos de 2 o 4 l/min y, con carácter excepcional, a 8 l/min. El servicio médico de la compañía puede exigir que el enfermo vaya acompañado por una persona entrenada en el manejo del sistema de oxigenoterapia. En la mayoría de los casos, el suministro de oxígeno durante el vuelo es una prestación que paga el viajero. Con carácter orientativo, desde enero de 2006 Iberia cobra 165 euros por vuelo y establece como tiempo mínimo para la reserva de oxígeno las 48 h previas a la salida del vuelo o las 24 h anteriores en los casos urgentes. De forma más excepcional, algunas compañías pueden exigir la adquisición de una plaza supletoria para la fuente de oxígeno.
Experiencias previas de desplazamiento con enfermos con oxigenoterapia o ventilación mecánica demuestran que los principales problemas provienen del traslado de los enfermos80. De forma general, la mayoría de las compañías sólo suministra oxígeno durante la estancia dentro del avión o durante el tránsito entre aviones de la misma compañía. En caso de necesitarlo durante el período de embarque o la estancia en el aeropuerto, el pasajero lo debería comunicar a los servicios médicos de la compañía para articular formas de transporte especiales, como el traslado en ambulancia hasta el avión. El transporte con oxígeno durante el vuelo no supone una excepcionalidad. Datos de Iberia señalan que unas 2.000 personas requieren suplementación de oxígeno en vuelo durante cada año.
También es posible utilizar un equipo de CPAP o ventiladores durante los viajes en avión. En este caso, el paciente debe llevar su propia máquina, puesto que no son suministradas por las compañías aéreas. Es importante mencionar que, dado que la inmensa mayoría de los aviones comerciales no dispone de enchufes en la cabina, el paciente debe llevar una batería seca para la alimentación autónoma del equipo.
El uso a bordo de CPAP o de un ventilador también debe ser solicitado al hacer la reserva y es necesario contar con la autorización del servicio médico de la compañía. En general, para el empleo de CPAP no se exige acompañante, mientras que para los pacientes en ventilación mecánica se suele requerir la presencia de un cuidador adiestrado en su manejo. Los pacientes con total dependencia del ventilador, que no toleren desconexiones transitorias durante el despegue, el aterrizaje o ante la existencia de cualquier eventualidad, no pueden volar en aviones comerciales. En ese caso, deberían utili zar ambulancias aéreas.
No obstante, existe una considerable disparidad en las regulaciones, disponibilidad, coste y facilidad para la gestión del oxígeno en vuelo179, por lo que es recomendable que el paciente o su representante conozca los criterios establecidos por la compañía con la que piensa volar. Resulta posible acceder a esta información directamente en las agencias de viaje, al realizar la reserva, o a través de la página web de la British Lung Foundation180.
Por último, es aconsejable que todos los pacientes con enfermedades respiratorias que pretendan volar consideren algunas indicaciones de carácter general (tabla VIII) e incluso que accedan a material informativo específico para pacientes180-182.
Agradecimientos
Los autores desean manifestar su agradecimiento al Dr. Fernando Merelo de Barberá, jefe de Medicina Aeronáutica de IBERIA, y al Dr. Francisco Ríos Tejada, jefe del Servicio de Medicina Aeroespacial del Centro de Instrucción en Medicina Aeroespacial, por su asesoramiento técnico en la redacción de este manuscrito.
Correspondencia: Dr. F. García Río.
Alfredo Marqueríe 11 izda. 1.°, A. 28034 Madrid. España.
Correo electrónico fgr01m@gmail.com