Journal Information
Vol. 46. Issue S11.
Aspectos relevantes en EPOC
Pages 2-7 (December 2010)
Share
Share
Download PDF
More article options
Vol. 46. Issue S11.
Aspectos relevantes en EPOC
Pages 2-7 (December 2010)
Full text access
Papel de la inflamación en la etiopatogenia de la EPOC
Role of inflammation in the etiopathogenesis of COPD
Visits
10762
Laura del Puerto-Nevado, Sandra Pérez-Rial, Álvaro Girón-Martínez, Germán Peces-Barba
Corresponding author
gpeces@fjd.es

Autor para correspondencia.
Laboratorio de Neumología Experimental, IIS-Fundación Jiménez Díaz, CIBERES, Madrid, España
This item has received
Article information
Resumen

La inflamación es una de las primeras respuestas que presenta el sistema inmunitario del organismo para hacer frente a cualquier tipo de agresión. La lesión que produce la inhalación del humo del tabaco desarrolla una respuesta inflamatoria que inicialmente se desencadena de manera innata, como sucede en cualquier tipo de agresión. Posteriormente se ve estimulada por la liberación de diferentes factores químicos que potencian la respuesta inflamatoria y, finalmente, dependiendo del tipo de agresión, llega a activar la inmunidad adquirida que, mediada por la participación de los linfocitos, sirve para establecer una barrera física contra la propagación de la lesión y para promover la recuperación del tejido pulmonar dañado. Sin embargo, el equilibrio entre inflamación y reparación no siempre se mantiene, como sucede en el caso de la enfermedad pulmonar obstructiva crónica (EPOC), donde aparecen marcados cambios en la arquitectura de las vías aéreas, espacios alveolares y arterias pulmonares, que suponen el trasfondo estructural de los cambios funcionales característicos de esta enfermedad.

Siendo la EPOC una enfermedad básicamente pulmonar, disponemos de datos acerca de la existencia de una inflamación asociada a nivel sistémico. Los orígenes de esta inflamación sistémica no están aclarados, hay información acerca de un origen común directo del humo del tabaco a todos los niveles y datos acerca de una inflamación primaria pulmonar que, por extensión, afecta secundariamente a nivel sistémico. En la presente revisión se describen los principales mecanismos implicados en el proceso inflamatorio existente a nivel pulmonar y a nivel sistémico en la EPOC.

Palabras clave:
Respuesta inmune
Mediadores de inflamación
EPOC
Abstract

Inflammation is one of the first immune system responses to any type of aggression. As with any type of aggression, the lesion produced by inhalation of tobacco smoke prompts an innate inflammatory response. Subsequently, this lesion is stimulated by the release of various chemical factors that enhance the inflammatory response and, finally — depending on the type of aggression — acquired immunity is activated, which, mediated by lymphocyte participation, serves to establish a physical barrier against the propagation of the lesion and to aid repair of the damaged pulmonary tissue. However, the balance between inflammation and repair is not always maintained, as is the case in chronic obstructive pulmonary disease (COPD), in which marked changes appear in the architecture of the airways, alveolar spaces and pulmonary arteries, forming the structural background of the functional changes characteristic of this disease.

COPD is basically a pulmonary disease but data are available on the existence of associated systemic inflammation. The origins of this systemic inflammation are unclear: some information indicates that tobacco smoke is a direct origin common to local and systemic inflammation, while other data point to primary pulmonary inflammation that secondarily produces systemic involvement. The present review describes the main mechanisms involved in both pulmonary and systemic inflammation in COPD.

Keywords:
Immunity
Inflammatory mediators
COPD
Full text is only aviable in PDF
Bibliografía
[1.]
I.M.W. Rahman.
Oxidant/antioxidant imbalance in smokers and chronic obstructive pulmonary disease.
Thorax, 51 (1996), pp. 348-350
[2.]
W. MacNee.
Pulmonary and systemic oxidant/antioxidant imbalance in chronic obstructive pulmonary disease.
Proc Am Thorac Soc, 2 (2005), pp. 50-60
[3.]
S.H.M. Enami, A.J. Colussi.
Acidity enhances the formation of a persistent ozonide at aqueous ascorbate/ozone gas interfaces.
Proc Natl Acad Sci USA, 105 (2008), pp. 7365-7369
[4.]
X.Y. Li, K. Donaldson, W. MacNee.
Mechanisms of cigarette smoke induced increased airspace permeability.
Thorax, 51 (1996), pp. 465-471
[5.]
J.G. Jones, P. Lawler, G. Hulands, J.C. Crawley, N. Veall.
Increased alveolar epithelial permeability in cigarette smokers.
Lancet, 1 (1980), pp. 66-68
[6.]
T. Rao, B. Richardson.
Environmentally induced autoimmune diseases: potential mechanisms.
Environ Health Perspect, 107 (1999), pp. 737-742
[7.]
A.M. Krieg, J. Vollmer.
Toll-like receptors 7, 8, and 9: linking innate immunity to autoimmunity.
Immunol Rev, 220 (2007), pp. 251-269
[8.]
L.C. Parker, L.R. Prince, I. Sabroe.
Translational mini-review series on Toll-like receptors: networks regulated by Toll-like receptors mediate innate and adaptive immunity.
Clin Exp Immunol, 147 (2007), pp. 199-207
[9.]
A. Crespo-Lessmann, C. Juárez-Rubio, V. Plaza-Moral.
Role of toll-like receptors in respiratory diseases.
Arch Bronconeumol, 46 (2010), pp. 135-142
[10.]
P. Matzinger.
The danger model: a renewed sense of self.
Science, 296 (2002), pp. 301-305
[11.]
A. Marshak-Rothstein.
Toll-like receptors in systemic autoimmune disease.
Nat Rev Immunol, 6 (2006), pp. 823-835
[12.]
P. Van Lint, C. Libert.
Chemokine and cytokine processing by matrix metalloproteinases and its effect on leukocyte migration and inflammation.
J Leukoc Biol, 82 (2007), pp. 1375-1381
[13.]
S.H. Lee, S. Goswami, A. Grudo, L.Z. Song, V. Bandi, S. Goodnight-White, et al.
Antielastin autoimmunity in tobacco smoking-induced emphysema.
Nat Med, 13 (2007), pp. 567-569
[14.]
McWilliam AS, Napoli S, Marsh AM, Pemper FL, Nelson DJ, Pimm CL, et al. Dendritic cells are recruited into the airway epithelium during the inflammatory response to a broad spectrum of stimuli. J Exp Med. 19961;184:2429-32.
[15.]
B.N. Lambrecht, J.B. Prins, H.C. Hoogsteden.
Lung dendritic cells and host immunity to infection.
Eur Respir J, 18 (2001), pp. 692-704
[16.]
K.M.-W.M. Górska, R. Krenke.
Airway inflammation in chronic obstructive pulmonary disease.
Curr Opin Pulm Med, 16 (2010), pp. 89-96
[17.]
C.M. Freeman, J.L. Curtis, S.W. Chensue.
CC chemokine receptor 5 and CXC chemokine receptor 6 expression by lung CD8+ cells correlates with chronic obstructive pulmonary disease severity.
Am J Pathol, 171 (2007), pp. 767-776
[18.]
M. Saetta, M. Mariani, P. Panina-Bordignon, G. Turato, C. Buonsanti, S. Baraldo, et al.
Increased expression of the chemokine receptor CXCR3 and its ligand CXCL10 in peripheral airways of smokers with chronic obstructive pulmonary disease.
Am J Respir Crit Care Med, 165 (2002), pp. 1404-1409
[19.]
M. Saetta, S. Baraldo, L. Corbino, G. Turato, F. Braccioni, F. Rea, et al.
CD8+ ve cells in the lungs of smokers with chronic obstructive pulmonary disease.
Am J Respir Crit Care Med, 160 (1999), pp. 711-717
[20.]
J.H. Vernooy, G.M. Moller, R.J. Van Suylen, M.P. Van Spijk, R.H. Cloots, P.H. Hoet, et al.
Increased granzyme A expression in type II pneumocytes of patients with severe chronic obstructive pulmonary disease.
Am J Respir Crit Care Med, 175 (2007), pp. 464-472
[21.]
G. Chrysofakis, N. Tzanakis, D. Kyriakoy, M. Tsoumakidou, I. Tsiligianni, M. Klimathianaki, et al.
Perforin expression and cytotoxic activity of sputum CD8+ lymphocytes in patients with COPD.
Chest, 125 (2004), pp. 71-76
[22.]
A.K. Sullivan, P.L. Simonian, M.T. Falta, J.D. Mitchell, G.P. Cosgrove, K.K. Brown, et al.
Oligoclonal CD4+ T cells in the lungs of patients with severe emphysema.
Am J Respir Crit Care Med, 172 (2005), pp. 590-596
[23.]
A. Di Stefano, G. Caramori, A. Capelli, I. Gnemmi, F.L. Ricciardolo, T. Oates, et al.
STAT4 activation in smokers and patients with chronic obstructive pulmonary disease.
Eur Respir J, 24 (2004), pp. 78-85
[24.]
G. Turato, R. Zuin, M. Miniati, S. Baraldo, F. Rea, B. Beghe, et al.
Airway inflammation in severe chronic obstructive pulmonary disease: relationship with lung function and radiologic emphysema.
Am J Respir Crit Care Med, 166 (2002), pp. 105-110
[25.]
B.W. Van der Strate, D.S. Postma, C.A. Brandsma, B.N. Melgert, M.A. Luinge, M. Geerlings, et al.
Cigarette smoke-induced emphysema: A role for the B cell?.
Am J Respir Crit Care Med, 173 (2006), pp. 751-758
[26.]
S.D. Shapiro.
End-stage chronic obstructive pulmonary disease: the cigarette is burned out but inflammation rages on.
Am J Respir Crit Care Med, 164 (2001), pp. 339-340
[27.]
A. Agustí, W. MacNee, K. Donaldson, M. Cosio.
Hypothesis: does COPD have an autoimmune component?.
Thorax, 58 (2003), pp. 832-834
[28.]
M.G. Cosio.
Autoimmunity, T-cells and STAT-4 in the pathogenesis of chronic obstructive pulmonary disease.
Eur Respir J, 24 (2004), pp. 3-5
[29.]
M.G. Cosio, M. Saetta, A. Agustí.
Immunologic aspects of chronic obstructive pulmonary disease.
N Engl J Med, 360 (2009), pp. 2445-2454
[30.]
L. Taraseviciene-Stewart, R. Scerbavicius, K.H. Choe, M. Moore, A. Sullivan, M.R. Nicolls, et al.
An animal model of autoimmune emphysema.
Am J Respir Crit Care Med, 171 (2005), pp. 734-742
[31.]
Y.B. Kuo, C.A. Chang, Y.K. Wu, M.J. Hsieh, C.H. Tsai, K.T. Chen, et al.
Identification and clinical association of anti-cytokeratin 18 autoantibody in COPD.
Immunol Lett, 128 (2010), pp. 131-136
[32.]
C.A. Feghali-Bostwick, A.S. Gadgil, L.E. Otterbein, J.M. Pilewski, M.W. Stoner, E. Csizmadia, et al.
Autoantibodies in patients with chronic obstructive pulmonary disease.
Am J Respir Crit Care Med, 177 (2008), pp. 156-163
[33.]
M. Cosio, H. Ghezzo, J.C. Hogg, R. Corbin, M. Loveland, J. Dosman, et al.
The relations between structural changes in small airways and pulmonary-function tests.
N Engl J Med, 298 (1978), pp. 1277-1281
[34.]
J.C. Hogg, F. Chu, S. Utokaparch, R. Woods, W.M. Elliott, L. Buzatu, et al.
The nature of small-airway obstruction in chronic obstructive pulmonary disease.
N Engl J Med, 350 (2004), pp. 2645-2653
[35.]
M. Saetta, A. Di Stefano, G. Turato, F.M. Facchini, L. Corbino, C.E. Mapp, et al.
CD8+ T-lymphocytes in peripheral airways of smokers with chronic obstructive pulmonary disease.
Am J Respir Crit Care Med, 157 (1998), pp. 822-826
[36.]
I.K.D.T. Demedts, K.R. Bracke, G.F. Joos, G.G. Brusselle.
Role of apoptosis in the pathogenesis of COPD and pulmonary emphysema.
Respir Res, 7 (2006), pp. 53
[37.]
H.Y.J. Kanazawa.
Elevated oxidative stress and reciprocal reduction of vascular endothelial growth factor levels with severity of COPD.
Chest, 128 (2005), pp. 3191-3197
[38.]
R.M. Tuder, L. Zhen, C.Y. Cho, L. Taraseviciene-Stewart, Y. Kasahara, D. Salvemini, et al.
Oxidative stress and apoptosis interact and cause emphysema due to vascular endothelial growth factor receptor blockade.
Am J Respir Cell Mol Biol, 29 (2003), pp. 88-97
[39.]
R.A. Pauwels, A.S. Buist, P.M. Calverley, C.R. Jenkins, S.S. Hurd.
Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. NHLBI/WHO Global Initiative for Chronic Obstructive Lung Disease (GOLD) Workshop summary.
Am J Respir Crit Care Med, 163 (2001), pp. 1256-1276
[40.]
A.G. Agustí, A. Noguera, J. Sauleda, E. Sala, J. Pons, X. Busquets.
Systemic effects of chronic obstructive pulmonary disease.
Eur Respir J, 21 (2003), pp. 347-360
[41.]
E.F. Wouters.
Local and systemic inflammation in chronic obstructive pulmonary disease.
Proc Am Thorac Soc, 2 (2005), pp. 26-33
[42.]
A. Noguera, X. Busquets, J. Sauleda, J.M. Villaverde, W. MacNee, A.G. Agustí.
Expression of adhesion molecules and G proteins in circulating neutrophils in chronic obstructive pulmonary disease.
Am J Respir Crit Care Med, 158 (1998), pp. 1664-1668
[43.]
A. Noguera, S. Batle, C. Miralles, J. Iglesias, X. Busquets, W. MacNee, et al.
Enhanced neutrophil response in chronic obstructive pulmonary disease.
Thorax, 56 (2001), pp. 432-437
[44.]
D. Burnett, A. Chamba, S.L. Hill, R.A. Stockley.
Neutrophils from subjects with chronic obstructive lung disease show enhanced chemotaxis and extracellular proteolysis.
Lancet, 2 (1987), pp. 1043-1046
[45.]
D. Cataldo, C. Munaut, A. Noel, F. Frankenne, P. Bartsch, J.M. Foidart, et al.
Matrix metalloproteinases and TIMP-1 production by peripheral blood granulocytes from COPD patients and asthmatics.
Allergy, 56 (2001), pp. 145-151
[46.]
G.J. Hageman, I. Larik, H.J. Pennings, G.R. Haenen, E.F. Wouters, A. Bast.
Systemic poly (ADP-ribose) polymerase-1 activation, chronic inflammation, and oxidative stress in COPD patients.
Free Radic Biol Med, 35 (2003), pp. 140-148
[47.]
R. Aldonyte, L. Jansson, E. Piitulainen, S. Janciauskiene.
Circulating monocytes from healthy individuals and COPD patients.
Respir Res, 4 (2003), pp. 11
[48.]
W.Q. Gan, S.F. Man, A. Senthilselvan, D.D. Sin.
Association between chronic obstructive pulmonary disease and systemic inflammation: a systematic review and a meta-analysis.
Thorax, 59 (2004), pp. 574-580
[49.]
R. Broekhuizen, E.F. Wouters, E.C. Creutzberg, A.M. Schols.
Raised CRP levels mark metabolic and functional impairment in advanced COPD.
Thorax, 61 (2006), pp. 17-22
[50.]
A.G. Agustí, J. Sauleda, C. Miralles, C. Gómez, B. Togores, E. Sala, et al.
Skeletal muscle apoptosis and weight loss in chronic obstructive pulmonary disease.
Am J Respir Crit Care Med, 166 (2002), pp. 485-489
[51.]
M. Dahl, A. Tybjaerg-Hansen, J. Vestbo, P. Lange, B.G. Nordestgaard.
Elevated plasma fibrinogen associated with reduced pulmonary function and increased risk of chronic obstructive pulmonary disease.
Am J Respir Crit Care Med, 164 (2001), pp. 1008-1011
[52.]
M. Di Francia, D. Barbier, J.L. Mege, J. Orehek.
Tumor necrosis factor-alpha levels and weight loss in chronic obstructive pulmonary disease.
Am J Respir Crit Care Med, 150 (1994), pp. 1453-1455
[53.]
M. Dietrich, G. Block, N.L. Benowitz, J.D. Morrow, M. Hudes, P. Jacob 3rd, et al.
Vitamin C supplementation decreases oxidative stress biomarker f2-isoprostanes in plasma of nonsmokers exposed to environmental tobacco smoke.
Nutr Cancer, 45 (2003), pp. 176-184
[54.]
M. Dietrich, G. Block, M. Hudes, J.D. Morrow, E.P. Norkus, M.G. Traber, et al.
Antioxidant supplementation decreases lipid peroxidation biomarker F(2)-isoprostanes in plasma of smokers.
Cancer Epidemiol Biomarkers Prev, 11 (2002), pp. 7-13
[55.]
J.H. Vernooy, M. Kucukaycan, J.A. Jacobs, N.H. Chavannes, W.A. Buurman, M.A. Dentener, et al.
Local and systemic inflammation in patients with chronic obstructive pulmonary disease: soluble tumor necrosis factor receptors are increased in sputum.
Am J Respir Crit Care Med, 166 (2002), pp. 1218-1224
Copyright © 2010. Sociedad Española de Neumología y Cirugía Torácica
Archivos de Bronconeumología
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?