Journal Information
Vol. 46. Issue 1.
Pages 20-26 (January 2010)
Share
Share
Download PDF
More article options
Vol. 46. Issue 1.
Pages 20-26 (January 2010)
Original Article
Full text access
Liver Growth Factor Improves Pulmonary Fibrosis Secondary to Cadmium Administration in Rats
El factor de crecimiento de hígado mejora la fibrosis pulmonar inducida tras la administración de cadmio en ratas
Visits
5334
Lourdes Martínez-Galána, Laura del Puerto-Nevadoa,
Corresponding author
lpuerto@fjd.es

Corresponding author.
, Sandra Pérez-Riala, Juan José Díaz-Gilb, Nicolás González-Mangadoa, Germán Peces-Barbaa
a Laboratorio de Neumología Experimental, Fundación Jiménez Díaz–CAPIO, CIBERES, Madrid, Spain
b Servicio de Bioquímica Experimental, Hospital Puerta de Hierro, Madrid, Spain
This item has received
Article information
Abstract
Introduction

Liver growth factor (LGF) is a liver mitogen with regenerating and anti-fibrotic activity even at extrahepatic sites. We used LGF in a lung fibrosis model induced by cadmium chloride (CdCl2), to study its antifibrotic capacity.

Methods

Forty-two male Wistar rats were administered a single dose of 0.5ml/rat of CdCl2 0.025% (n=21) or the same volume of saline (control group, n=21). After 35 days, once a lesion was established, we started a 3 week treatment with LGF, after which we determined lung function ––inspiratory capacity (IC), lung compliance (LC), forced vital capacity (FVC) and expiratory flow at 75% (FEF75%)––, lung morphometry ––alveolar internal area (AIA), mean linear intersection (LM)––, and collagen (both by Sirius red and hydroxyproline residues) and elastin contents.

Results

Pulmonary fibrosis in CdCl2 rats was characterized by a marked decrease in pulmonary function with respect to healthy controls ––reductions of 28% in IC, 38% in CL, 31% in FVC, and 54% in FEF75%–– which was partially recovered after LGF injection ––18% IC, 27% CL, 19% FVC and 35% FEF75%––; increase in collagen and elastin contents ––165% and 76%, respectively, in CdCl2 rats, versus 110% and 34% after LGF injection––; and increases in AIA and LM, partially inverted by LGF.

Conclusions

Together, these data seem to demonstrate that LGF is able to improve lung function and partially inverts the increase in lung matrix proteins produced by CdCl2 instillation.

Keywords:
Liver growth factor
Fibrosis
Lung function
Lung morphometry
Collagen
Resumen
Introducción

El liver growth factor (LGF, ‘factor de crecimiento de hígado’) es un mitógeno con actividad regeneradora y antifibrótica con actividad incluso en localizaciones extrahepáticas. En este trabajo se administró LGF en un modelo de fibrosis pulmonar inducido con cloruro de cadmio (CdCl2) para estudiar su capacidad antifibrótica.

Métodos

Se instilaron 42 ratas Wistar macho con 0,5ml/rata de CdCl2 al 0,025% (n=21) o de salino (n=21). Transcurridos 35 días y una vez establecida la lesión se realizó el tratamiento con LGF y posteriormente el análisis de los parámetros funcionales ––capacidad inspiratoria (CI), complianza pulmonar (CL), capacidad vital forzada (CVF) y flujo espiratorio forzado al 75% (FEF75%)––, morfometría ––área interna alveolar y distancia media entre paredes alveolares–– y contenido en colágeno y elastina.

Resultados

La fibrosis pulmonar originada mediante CdCl2 se caracterizó por un marcado descenso de la función pulmonar en comparación con los controles. Se redujó un 28% la CI, un 38% la CL, un 31% la CVF y un 54% la FEF75%, descenso que se revirtió parcialmente tras la inyección de LGF ––el 18% en CI, el 27% en CL, el 19% en CVF y el 35% en FEF75%––. Además, se observó un incremento en la cantidad de colágeno y elastina del 165 y el 76%, respectivamente, en las ratas del grupo CdCl2 frente a un 110 y un 34% tras la inyección de LGF.

Conclusiones

Estos datos demuestran que el LGF mejora la función pulmonar y revierte parcialmente el incremento de las proteínas de matriz pulmonar producido por la instilación con CdCl2.

Palabras clave:
Factor de crecimiento de hígado
Fibrosis
Función pulmonar
Morfometría pulmonar
Colágeno
Full text is only aviable in PDF
References
[1.]
S. Murakami, N. Nagaya, T. Itoh, T. Fujii, T. Iwase, K. Hamada, et al.
C-type natriuretic peptide attenuates bleomycin-induced pulmonary fibrosis in mice.
Am J Physiol Lung Cell Mol Physiol, 287 (2004), pp. L1172-L1177
[2.]
M. Molina-Molina, J. Pereda, A. Xaubet.
Experimental models for the study of pulmonary fibrosis: Current usefulness and future promise.
Arch Bronconeumol, 43 (2007), pp. 501-507
[3.]
S. Heili Frades, L. Del Puerto-Nevado, S. Pérez-Rial, C. Martín-Mosquero, M. Ortega, L. Martínez-Galán, et al.
Improving the cadmium-induced centriacinar emphysema model in rats by concomitant anti-oxidant treatment.
Clin Exp Pharmacol Physiol, 35 (2008), pp. 1337-1342
[4.]
M.L. Rubio, M.V. Sánchez-Cifuentes, G. Peces-Barba, S. Verbanck, M. Paiva, N. González Mangado.
Intrapulmonary gas mixing in panacinar- and centriacinar-induced emphysema in rats.
Am J Respir Crit Care Med, 157 (1998), pp. 237-245
[5.]
G.L. Snider, E.C. Lucey, B. Faris, Y. Jung-Legg, P.J. Stone, C. Franzblau.
Cadmium-chloride-induced air-space enlargement with interstitial pulmonary fibrosis is not associated with destruction of lung elastin. Implications for the pathogenesis of human emphysema.
Am Rev Respir Dis, 137 (1988), pp. 918-923
[6.]
K.E. Driscoll, J.K. Maurer, J. Poynter, J. Higgins, T. Asquith, N.S. Miller.
Stimulation of rat alveolar macrophage fibronectin release in a cadmium chloride model of lung injury and fibrosis.
Toxicol Appl Pharmacol, 116 (1992), pp. 30-37
[7.]
F.R. Frankel, J.R. Steeger, V.V. Damiano, M. Sohn, D. Oppenheim, G. Weinbaum.
Induction of unilateral pulmonary fibrosis in the rat by cadmium chloride.
Am J Respir Cell Mol Biol, 5 (1991), pp. 385-394
[8.]
V.V. Damiano, P.V. Cherian, F.R. Frankel, J.R. Steeger, M. Sohn, D. Oppenheim, et al.
Intraluminal fibrosis induced unilaterally by lobar instillation of CdCl2 into the rat lung.
Am J Pathol, 137 (1990), pp. 883-894
[9.]
J.J. Díaz-Gil, J.G. Gavilanes, G. Sánchez, R. García-Canero, J.M. García-Segura, L. Santamaría, et al.
Identification of a liver growth factor as an albumin-bilirubin complex.
Biochem J, 243 (1987), pp. 443-448
[10.]
J.J. Díaz-Gil, G. Sánchez, C. Trilla, P. Escartin.
Identification of biliprotein as a liver growth factor.
Hepatology, 8 (1988), pp. 484-486
[11.]
J.J. Díaz-Gil, P. Escartin, R. García-Canero, C. Trilla, J.J. Veloso, G. Sánchez, et al.
Purification of a liver DNA-synthesis promoter from plasma of partially hepatectomized rats.
Biochem J, 235 (1986), pp. 49-55
[12.]
J.J. Díaz-Gil, J. Muñoz, A. Albillos, C. Rua, C. Machín, R. García-Canero, et al.
Improvement in liver fibrosis, functionality and hemodynamics in CCI4-cirrhotic rats after injection of the liver growth factor.
J Hepatol, 30 (1999), pp. 1065-1072
[13.]
J.J. Díaz-Gil, C. García-Monzón, C. Rua, P. Martín-Sanz, R.M. Cereceda, M.E. Miquilena-Colina, et al.
The anti-fibrotic effect of liver growth factor is associated with decreased intrahepatic levels of matrix metalloproteinases 2 and 9 and transforming growth factor beta 1 in bile duct-ligated rats.
Histol Histopathol, 23 (2008), pp. 583-591
[14.]
J.J. Díaz-Gil, C. García-Monzón, C. Rua, P. Martín-Sanz, R.M. Cereceda, M.E. Miquilena-Colina, et al.
Liver growth factor antifibrotic activity in vivo is associated with a decrease in activation of hepatic stellate cells.
Histol Histopathol, 24 (2009), pp. 473-479
[15.]
B. Somoza, F. Abderrahim, J.M. González, M.V. Conde, S.M. Arribas, B. Starcher, et al.
Short-term treatment of spontaneously hypertensive rats with liver growth factor reduces carotid artery fibrosis, improves vascular function, and lowers blood pressure.
Cardiovasc Res, 69 (2006), pp. 764-771
[16.]
D. Reimers, A.S. Herranz, J.J. Díaz-Gil, M.V. Lobo, C.L. Paino, R. Alonso, et al.
Intrastriatal infusion of liver growth factor stimulates dopamine terminal sprouting and partially restores motor function in 6-hydroxydopamine-lesioned rats.
J Histochem Cytochem, 54 (2006), pp. 457-465
[17.]
R. Gonzalo-Gobernado, D. Reimers, A.S. Herranz, J.J. Díaz-Gil, C. Osuna, M.J. Asensio, et al.
Mobilization of neural stem cells and generation of new neurons in 6-OHDA-lesioned rats by intracerebroventricular infusion of liver growth factor.
J Histochem Cytochem, 57 (2009), pp. 491-502
[18.]
J.J. Díaz-Gil, P.L. Majano, M. López-Cabrera, V. Sánchez-López, C. Rua, C. Machín, et al.
The mitogenic activity of the liver growth factor is mediated by tumor necrosis factor alpha in rat liver.
J Hepatol, 38 (2003), pp. 598-604
[19.]
G.K. Reddy, C.S. Enwemeka.
A simplified method for the analysis of hydroxyproline in biological tissues.
Clin Biochem, 29 (1996), pp. 225-229
[20.]
J.J. Díaz Gil, C. Rua, C. Machín, R.M. Cereceda, R. García-Canero, M. de Foronda, et al.
Hepatic growth induced by injection of the liver growth factor into normal rats.
Growth Regul, 4 (1994), pp. 113-122
[21.]
M. Dolhnikoff, T. Mauad, M.S. Ludwig.
Extracellular matrix and oscillatory mechanics of rat lung parenchyma in bleomycin-induced fibrosis.
Am J Respir Crit Care Med, 160 (1999), pp. 1750-1757
[22.]
G.L. Snider, J.A. Hayes, A.L. Korthy, G.P. Lewis.
Centrilobular emphysema experimentally induced by cadmium chloride aerosol.
Am Rev Respir Dis, 108 (1973), pp. 40-48
[23.]
M. Selman, C. Navarro, M. Gaxiola.
Idiopathic pulmonary fibrosis: In search of an effective treatment.
Arch Bronconeumol, 41 (2005), pp. 15-20
[24.]
M. Dohi, T. Hasegawa, K. Yamamoto, B.C. Marshall.
Hepatocyte growth factor attenuates collagen accumulation in a murine model of pulmonary fibrosis.
Am J Respir Crit Care Med, 162 (2000), pp. 2302-2307
[25.]
D.B. Chandler, J.D. Fulmer.
The effect of deferoxamine on bleomycin-induced lung fibrosis in the hamster.
Am Rev Respir Dis, 131 (1985), pp. 596-598
[26.]
H. Erdogan, M. Kotuk, M. Yagmurca, T. Kilic, H. Ermis, et al.
Ginkgo biloba inhibits bleomycin-induced lung fibrosis in rats.
Pharmacol Res, 53 (2006), pp. 310-316
[27.]
E.S. Yi, S.T. Williams, H. Lee, D.M. Malicki, E.M. Chin, S. Yin, et al.
Keratinocyte growth factor ameliorates radiation- and bleomycin-induced lung injury and mortality.
Am J Pathol, 149 (1996), pp. 1963-1970
[28.]
M. Inayama, Y. Nishioka, M. Azuma, S. Muto, Y. Aono, H. Makino, et al.
A novel IkappaB kinase-beta inhibitor ameliorates bleomycin-induced pulmonary fibrosis in mice.
Am J Respir Crit Care Med, 173 (2006), pp. 1016-1022
[29.]
Y.J. Li, A. Azuma, J. Usuki, S. Abe, K. Matsuda, T. Sunazuka, et al.
EM703 improves bleomycin-induced pulmonary fibrosis in mice by the inhibition of TGF-beta signaling in lung fibroblasts.
Respir Res, 7 (2006), pp. 16
[30.]
G. Gurujeyalakshmi, S.N. Giri.
Molecular mechanisms of antifibrotic effect of interferon gamma in bleomycin-mouse model of lung fibrosis. Down regulation of TGF-beta and procollagen I and III gene expression.
Exp Lung Res, 21 (1995), pp. 791-808
[31.]
A. Serrano-Mollar, M. Nacher, G. Gay-Jordi, D. Closa, A. Xaubet, O. Bulbena.
Intratracheal transplantation of alveolar type II cells reverses bleomycin-induced lung fibrosis.
Am J Respir Crit Care Med, 176 (2007), pp. 1261-1268
[32.]
L. Condezo-Hoyos, F. Abderrahim, M.V. Conde, C. Susin, J.J. Díaz-Gil, M.C. González, et al.
Antioxidant activity of liver growth factor, a bilirubin covalently bound to albumin.
Free Radic Biol Med, 46 (2009), pp. 656-662
[33.]
S. Abe, C. Boyer, X. Liu, F.Q. Wen, T. Kobayashi, Q. Fang, et al.
Cells derived from the circulation contribute to the repair of lung injury.
Am J Respir Crit Care Med, 170 (2004), pp. 1158-1163
[34.]
K. Ishizawa, H. Kubo, M. Yamada, S. Kobayashi, T. Suzuki, S. Mizuno, et al.
Hepatocyte growth factor induces angiogenesis in injured lungs through mobilizing endothelial progenitor cells.
Biochem Biophys Res Commun, 324 (2004), pp. 276-280
[35.]
B.N. Gomperts, J.A. Belperio, M.C. Fishbein, M.P. Keane, M.D. Burdick, R.M. Strieter.
Keratinocyte growth factor improves repair in the injured tracheal epithelium.
Am J Respir Cell Mol Biol, 37 (2007), pp. 48-56
Copyright © 2010. Sociedad Española de Neumología y Cirugía Torácica
Archivos de Bronconeumología
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?