Journal Information
Vol. 38. Issue 5.
Pages 226-235 (May 2002)
Vol. 38. Issue 5.
Pages 226-235 (May 2002)
Full text access
Fracaso de los músculos respiratorios en la sepsis
Visits
19093
E. Barreiroa,b,
, S.N.A. Hussainb
Corresponding author
ebarreiro@imim.es
Correspondencia: Servicio de Neumología. Hospital del Mar-IMIM. Dr. Aiguader, 80. 08003 Barcelona
Correspondencia: Servicio de Neumología. Hospital del Mar-IMIM. Dr. Aiguader, 80. 08003 Barcelona
This item has received
Article information
Full text is only aviable in PDF
Bibliografía
[1.]
G. Farkas, F. Cerny, D.F. Rochester.
Contractility of the ventilatory pump muscles.
Med Sci Sports Exerc, 28 (1996), pp. 1106-1114
[2.]
O. Fenn.
A comparison of respiratory and skeletal muscles.
Perspectives in Biology. Houssay Memorial Papers,
[3.]
J.T. Sharp.
Respiratory muscles: a review of old and new concepts.
Lung, 157 (1980), pp. 185-199
[4.]
A. De Troyer.
Mechanical action of the abdominal muscles.
Bull Eur Physiopathol Respir, 19 (1983), pp. 575-581
[5.]
J.E. Parrillo.
Shock syndromes related to sepsis.
Cecil Textbook of Medicine, pp. 507-512
[6.]
J.F. Burke, H. Pontoppidan, C.E. Welch.
High output respiratory failure.
Ann Surg, 158 (1963), pp. 581-594
[7.]
C.A. Cohen, G. Zagelbaum, D. Gross, C. Roussos, P.T. Macklem.
Clinical manifestations of inspiratory muscle fatigue.
Am J Med, 73 (1982), pp. 308-316
[8.]
G. Friman.
Effects of acute infectious disease on isometric strength.
Scand J Clin Lab Invest, 37 (1977), pp. 303-308
[9.]
S.N.A. Hussain, G. Simkus, C. Roussos.
Respiratory muscle fatigue: a cause of ventilatory failure in septic shock.
J Appl Physiol, 58 (1985), pp. 2033-2040
[10.]
A. Leon, J. Boczkowski, B. Dureuil, J.M. Desmonts, M. Aubier.
Effects of endotoxic shock on diaphragmatic function in mechanically ventilated rats.
J Appl Physiol, 72 (1992), pp. 1466-1472
[11.]
J. Boczkowski, B. Dureuil, R. Pariente, M. Aubier.
Preventive effects of indomethacin on diaphragmatic contractile alterations in endotoxemic rats.
Am Rev Respir Dis, 142 (1990), pp. 193-198
[12.]
C. Shindoh, A. DiMarco, D. Nethery, G. Supinski.
Effect of PEG-superoxide dismutase on the diaphragmatic response to endotoxin.
Am Rev Respir Dis, 145 (1992), pp. 1350-1354
[13.]
K.M. Krause, M.R. Moody, F.H. Andrade, A.T. Addison, I.I.I. Miller CC, L. Kobzik, et al.
Peritonitis causes diaphragm weakness in rats.
Am J Respir Crit Care Med, 157 (1998), pp. 1277-1282
[14.]
S.N.A. Hussain.
Respiratory muscle dysfunction in sepsis.
Mol Cell Biochem, 179 (1998), pp. 125-134
[15.]
S.N.A. Hussain, C. Roussos, S. Magder.
Autoregulation of diaphragmatic blood flow in dogs.
J Appl Physiol, 64 (1988), pp. 329-336
[16.]
S.N.A. Hussain, R. Graham, F. Rutledge, C. Roussos.
Respiratory muscle energetics during endotoxic shock in dogs.
J Appl Physiol, 60 (1986), pp. 486-493
[17.]
P.T. Diaz, M.W. Julian, M. Wewers, T.L. Clanton.
Tumor necrosis factor and endotoxin do not directly affect in vitro diaphragm function.
Am Rev Respir Dis, 148 (1993), pp. 281
[18.]
T.D. Murphy, R. Gibson, T.A. Standaert, D.E. Woodrum.
Diaphragmatic failure during group streptococcal sepsis in piglets: the role of thromboxane A2.
J Appl Physiol, 78 (1995), pp. 491-498
[19.]
P.G. Wilcox, Y. Wakai, K.R. Walley, D.J. Cooper, J. Road.
Tumor necrosis factor (decreases in vivo diaphragm contractility in dogs.
Am J Respir Crit Care Med, 150 (1994), pp. 1368-1373
[20.]
C. Shindoh, W. Hida, Y. Ohkawara, K. Yamauchi, I. Ohno, T. Takishima, et al.
TNF-α mRNA expression in diaphragm muscle after endotoxin administration.
Am J Respir Crit Care Med, 152 (1995), pp. 1690-1696
[21.]
S. Moncada, R.M.J. Palmer, E.A. Higgs.
Nitric oxide: physiology, pathophysiology, and pharmacology.
Pharmacol Rev, 43 (1991), pp. 109-142
[22.]
B. Gaston, J.M. Drazen, J. Loscalzo, J.S. Stamler.
The biology of nitrogen oxides in the airways.
Am J Respir Crit Care Med, 149 (1994), pp. 538-551
[23.]
F.C. Fang.
Mechanisms of nitric oxide-related antimicrobial activity.
J Clin Invest, 100 (1997), pp. S43-S50
[24.]
J.S. Beckman, W.H. Koppenol.
Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and the ugly.
Am J Physiol, 271 (1996), pp. C1424-C1437
[25.]
J. Goretski, T.C. Hollocher.
Trapping of nitric oxide produced during denitrification by extracellular hemoglobin.
J Biol Chem, 263 (1988), pp. 2316-2323
[26.]
R.G. Knowles, S. Moncada.
Nitric oxide synthases in mammals.
Biochem J, 298 (1994), pp. 249-258
[27.]
L. Kobzik, M.B. Reid, D.S. Bredt, J.S. Stamler.
Nitric oxide in skeletal muscle.
Nature, 372 (1994), pp. 546-548
[28.]
Y. Fujii, Y. Guo, S.N.A. Hussain.
Regulation of nitric oxide production in response to skeletal muscle activation.
J Appl Physiol, 85 (1998), pp. 2330-2336
[29.]
Q. El Dwari, A. Comtois, Y. Guo, S.N.A. Hussain.
Endotoxin-induced skeletal muscle contractile dysfunction: contribution of nitric oxide synthases.
Am J Physiol, 274 (1998), pp. C770-C779
[30.]
A.S. Comtois, E. Barreiro, P.L. Huang, A. Marette, M. Perrault, S.N.A. Hussain.
Lipoplysaccharide-induced diaphragmatic contractile dysfunction and sarcolemmal injury in mice lacking the neuronal nitric oxide synthase.
Am J Respir Crit Care Med, 163 (2001), pp. 977-982
[31.]
L. Kobzik, B. Stringer, J.L. Balligand, M.B. Reid, J.S. Stamler.
Endothelial type nitric oxide synthase in skeletal muscle fibers: mitochondrial relationships.
Biochem Biophys Res Commun, 211 (1995), pp. 375-381
[32.]
S.N.A. Hussain, A. Giaid, Q. El Dwari, D. Sakkal, R. Hattori, Y. Guo.
Expression of nitric oxide synthases and GTP cyclohydrolase I in the ventilatory and limb muscles during endotoxemia.
Am J Respir Cell Mol Biol, 17 (1997), pp. 173-180
[33.]
Q. El Dwari, A. Comtois, Y. Guo, S.N.A. Hussain.
Endotoxin-induced skeletal muscle contractile dysfunction: contribution of nitric oxide synthases.
Am J Physiol, 274 (1998), pp. C770-C779
[34.]
J. Boczkowski, S. Lanone, D. Ungureanu-Longrois, G. Danialou, T. Fournier, M. Aubier.
Induction of diaphragmatic nitric oxide synthase after endotoxin administration in rats.
J Clin Invest, 98 (1996), pp. 1550-1559
[35.]
M. Thompson, L. Becker, D. Bryant, G. Williams, D. Levin, L. Margraf, B.P. Giroir.
Expression of the inducible nitric oxide synthase gene in diaphragm and skeletal muscle.
J Appl Physiol, 81 (1996), pp. 2415-2420
[36.]
I. Gath, E.I. Closs, U. Godtel-Armbrust, S. Schmitt, M. Nakane, I. Wessler, U. Forstermann.
Inducible NO synthase II and neuronal NO synthase I are constitutively expressed in different structures of guinea pig skeletal muscle: implications for contractile function.
Faseb J, 10 (1996), pp. 1614-1620
[37.]
A.S. Comtois, Q. El Dwari, V. Laubach, S.N.A. Hussain.
Lipolysaccharide- induced diaphragmatic contractile dysfunction in mice lacking the inducible nitric oxide synthase.
Am J Respir Crit Care Med, 159 (1999), pp. 1975-1980
[38.]
J.S. Stamler, G. Meissner.
Physiology of nitric oxide in skeletal muscle.
Physiol Rev, 81 (2001), pp. 209-237
[39.]
A. Van der Vliet, J.P. Eiserich, M.K. Shigenaga, C.E. Cross.
Reactive nitrogen species and tyrosine nitration in the respiratory tract.
Am J Respir Crit Care Med, 160 (1999), pp. 1-9
[40.]
J.S. Beckman.
Oxidative damage and tyrosine nitration from peroxynitrite.
Chem Res Toxicol, 9 (1996), pp. 836-844
[41.]
H. Rubbo, V. Darley-Usmar, B.A. Freeman.
Nitric oxide regulation of tissue free radical injury.
Chem Res Toxicol, 9 (1996), pp. 809-820
[42.]
S. Tamir, S. Burney, S.R. Tannenbaum.
DNA damage by nitric oxide.
Chem Res Toxicol, 9 (1996), pp. 821-827
[43.]
H. Ischiropoulos.
Biological tyrosine nitration: a pathophysiological function of nitric oxide and reactive oxygen species.
Arch Biochem Bioph, 356 (1998), pp. 1-11
[44.]
L.A. MacMillan-Crow, J.P. Crow, J.D. Kerby, J.S. Beckman.
Nitration and inactivation of manganese superoxide dismutase in chronic jection of human renal allografts.
Proc Natl Acad Sci USA, 93 (1996), pp. 11853-11858
[45.]
J.P. Crow, Y.Z. Ye, M. Kirk, S. Barnes, J.S. Beckman.
Superoxide dismutase catalyzes nitration of tyrosines by peroxynitrite in the rod and head domains of neurofilament-L.
J Neurochem, 69 (1997), pp. 1945-1953
[46.]
A. Boota, H. Zar, Y.M. Kim, B. Johnson, B. Pitt, P. Davies.
IL-1 beta stimulates superoxide and delayed peroxynitrite production by pulmonary vascular smooth muscle cells.
Am J Physiol, 271 (1996), pp. L932-L938
[47.]
J.P. Eiserich, A.G. Estevez, T. Bamberg, Y.Z. Ye, P.H. Chumley, J.S. Beckman, et al.
Microtubule dysfunction by post-translational nitrotyrosination of α-tubulin: a nitric oxide-dependent mechanism of cellular injury.
Proc Natl Acad Sci USA, 96 (1999), pp. 6365-6370
[48.]
J.J. Moreno, W.A. Pryor.
Inactivation of a1-proteinase inhibitor by peroxynitrite.
Chem Res Toxicol, 5 (1991), pp. 425-431
[49.]
J.F. Turrens, A. Boveris.
Generation of superoxide anion by the NADPH dehydrogenase of bovine heart mitochondria.
Biochem J, 191 (1980), pp. 421-427
[50.]
G. Supinski.
Free radical induced respiratory muscle dysfunction.
Mol Cell Biochem, 179 (1998), pp. 99-110
[51.]
K.J.A. Davies, A.T. Quintanhilha, G.A. Brooks, L.J. Packer.
Free radical and tissue damage produced by exercise.
Biochem Biophys Res Comm, 107 (1982), pp. 1198-1205
[52.]
K. Gohil, L. Rothfuss, J. Lang, L. Packer.
Effect of exercise training on tissue vitamin E and ubiquinone content.
J Appl Physiol, 63 (1987), pp. 1638-1641
[53.]
D.A. Parks, D.N. Granger.
Ischemia-induced vascular changes: Role xanthine oxidase and hydroxyl radicals.
Am J Physiol, 245 (1983), pp. G285-G289
[54.]
Javesghani D, Magder S, Barreiro E, Quinn MT, Hussain SNA. Production of superoxide anions by the NAD(P)H oxidase in mammalian skeletal muscles [en prensa]. Am J Respir Crit Care Med
[55.]
H.A. Kontos.
Oxygen radicals in cerebral vascular injury.
Cir Res, 57 (1985), pp. 508-516
[56.]
M.J. Jackson, R.H. Edwards.
Free radicals and trials of antioxidant therapy in muscle diseases.
Adv Exp Med Biol, 264 (1990), pp. 485-491
[57.]
M.B. Reid, K.E. Haack, K.M. Franchek, P.A. Valberg, L. Kobzik, M.S. West.
Reactive oxygen in skeletal muscle: I. Intracellular oxidant kinetics and fatigue in vitro.
J Appl Physiol, 73 (1992), pp. 1797-1804
[58.]
M.B. Reid.
Muscle fatigue: mechanisms and regulation.
Exercise and oxygen Toxicity, 2nd ed,
[59.]
M.B. Reid, T. Shoji, M.R. Moody, M.L. Entman.
Reactive oxygen in skeletal muscle (II). Extracellular release of free radicals.
J Appl Physiol, 73 (1992), pp. 1805-1809
[60.]
M.B. Reid, F.A. Khawli, M.R. Moody.
Reactive oxygen in skeletal muscle.III. Contractility of unfatigued muscles.
J Appl Physiol, 75 (1993), pp. 1081-1087
[61.]
F. Khawli, M.B. Reid.
N-acetylcysteine depresses contractile function and inhibits fatigue of diaphragm in vitro.
J Appl Physiol, 77 (1994), pp. 317-324
[62.]
F.H. Andrade, M.B. Reid, D.G. Allen, H. Westerblad.
Effect of hydrogen peroxide and dithiothreitol on contractile function of single skeletal muscle fibers from mouse.
J Phyisiol, 509 (1998), pp. 565-575
[63.]
G. Supinski, D. Nethery, A. DiMarco.
Effect of free radical scavengers on endotoxin-induced respiratory muscle dysfunction.
Am Rev Respir Dis, 148 (1993), pp. 1318-1324
[64.]
J.G. Peralta, S. Llesuy, P. Evelson, M.C. Carreras, B. Gonzalez, J.J. Poderoso.
Oxidative stress in skeletal muscle during sepsis in rats.
Cir Shock, 39 (1993), pp. 153-159
[65.]
S. Llesuy, P. Evelson, B. Gonzalez, J.G. Peralta, M.C. Carreras, J.J. Poderoso, et al.
Oxidative stress in muscle and liver of rats with septic syndrome.
Free Radic Biol Med, 16 (1994), pp. 445-451
[66.]
G. Supinski, D. Nethery, D. Stofan, A. DiMarco.
Comparison of the effects of endotoxin on limb, respiratory, and cardiac muscles.
J Appl Physiol, 81 (1996), pp. 1370-1378
[67.]
L.A. Callahan, D. Stofan, L.I. Szweda, D. Nethery, G. Supinski.
Free radicals alter maximal diaphragmatic mitochondrial oxygen consumption in endotoxin-induced sepsis.
Free Radic Biol Med, 30 (2001), pp. 129-138
[68.]
L.A. Callahan, D. Nethery, D. Stofan, A. DiMarco, G. Supinski.
Free radical-induced contractile protein dysfunction in endotoxin-induced sepsis.
Am J Respir Cell Mol Biol, 24 (2001), pp. 210-217
[69.]
K.J.A. Davies.
Protein damage and degradation by oxygen radicals.
J Biol Chem, 262 (1987), pp. 9895-9901
[70.]
S.P. Wolf, R.T. Dean.
Fragmentation of proteins by free radicals and its effect on their susceptibility to enzymic hydrolysis.
Biochem J, 234 (1986), pp. 399-403
[71.]
R. Tenhunen, H.S. Marver, R. Schmid.
The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase.
Proc Natl Acad Sci USA, 61 (1968), pp. 748-755
[72.]
A.M.K. Choi, J. Alam.
Heme oxygenase-1: Function, regulation, and implication of a novel stress-inducible protein in oxidant-induced lung injury.
Am J Respir Cell Mol Biol, 15 (1996), pp. 9-19
[73.]
M.D. Maines.
Heme oxygenase: function, multiplicity, regulatory mechanisms and clinical implications.
Faseb J, 2 (1988), pp. 2557-2568
[74.]
W.K. McCoubrey, J.F. Ewing, M.D. Maines.
Human heme oxygenase- 2: characterization and expression of a full-length cDNA and evidence suggesting that the two HO-2 transcripts may differ by choice of polyadenylation signal.
Arch Biochem Biophys, 295 (1992), pp. 13-20
[75.]
W.K. McCoubrey, T.J. Huang, M.D. Maines.
Isolation and characterization of a cDNA from the rat brain that encodes hemoprotein heme oxygenase-3.
Eur J Biochem, 247 (1997), pp. 725-732
[76.]
P.K. Datta, E.A. Lianos.
Nitric oxide induces heme oxygenase-1 gene expression in mesangial cells.
Kidney Int, 55 (1999), pp. 1734-1739
[77.]
T. Polte, A. Abate, P.A. Dennery, H. Schroder.
Heme-oxygenase-1 is a cGMP-inducible endothelial protein and mediates the cytoprotective action of nitric oxide.
Arterioscler Thromb Vasc Biol, 20 (2000), pp. 1209-1215
[78.]
C.M. Terry, J.A. Clikeman, J.R. Hoidal, K.S. Callahan.
Effect of tumor necrosis factor-α and interleukin-1α on heme oxygenase-1 expression in human endothelial cells.
Am J Physiol Heart Circ Physiol, 274 (1998), pp. H883-H891
[79.]
R. Eyssen-Hernandez, A. Ladoux, C. Frelin.
Differential regulation of cardiac heme-oxygenase and vacular endothelial growth factor mRNA expressions by hemin, heavy metals, heat shock, and anoxia.
FEBS Lett, 382 (1996), pp. 229-233
[80.]
M.S. Carraway, A.J. Ghio, J.L. Taylor, C.A. Piantadosi.
Induction of ferritin and heme-oxygenase-1 by endotoxin in the lung.
Am J Physiol, 275 (1998), pp. L583-L592
[81.]
S.L. Camhi, J. Alam, G.W. Wiegand, B.Y. Chin, A.M.K. Choi.
Transcriptional activation of the HO-1 gene by lipopolysaccharide is mediated by 5' distal enhancers: role of reactive oxygen intermediates and AP-1.
Am J Respir Cell Mol Biol, 18 (1998), pp. 226-234
[82.]
P.J. Lee, J. Alam, S.L. Sylvester, N. Inamdar, L. Otterbein, A.M.K. Choi.
Regulation of heme-oxygenase-1 expression in vivo and in vitro in hyperoxic lung injury.
Am J Respir Cell Mol Biol, 14 (1996), pp. 556-568
[83.]
L.E. Otterbein, A.M.K. Choi.
Heme oxygenase: colors of defense against cellular stress.
Am J Physiol, 279 (2000), pp. L1029-L1037
[84.]
O. Baum, M. Feussner, H. Richter, R. Gossrau.
Heme-oxygenase-2 is present in the sarcolemma region of skeletal muscle fibers and is non-continuously co-localized with nitric oxide synthase-1.
Acta Histochem, 102 (2000), pp. 281-298
[85.]
D.A. Essig, D.R. Borger, D.A. Jackson.
Induction of heme-oxygenase- 1 (HSP32) mRNA in skeletal muscle following contractions.
Am J Physiol, 272 (1997), pp. C59-C67
[86.]
M.J.J. Vesely, R. Sanders, C.J. Green, R. Motterlini.
Fibre type of haem oxygenase-1 induction in rat skeletal muscle.
FEBS Lett, 458 (1999), pp. 257-260
[87.]
L. Otterbein, S.L. Sylvester, A.M.K. Choi.
Hemoglobin provides protection against lethal endotoxemia in rats: the role of heme oxygenase-1.
Am J Respir Cell Mol Biol, 13 (1995), pp. 595-601
[88.]
C. Taille, R. Foresti, S. Lanone, C. Zedda, C. Green, M. Aubier, et al.
Protective role of heme oxygenases against endotoxin-induced diaphragmatic dysfunction in rats.
Am J Crit Care Med, 163 (2001), pp. 753-761
Copyright © 2002. Sociedad Española de Neumología y Cirugía Torácica