Journal Information
Vol. 43. Issue 9.
Pages 479-484 (January 2007)
Share
Share
Download PDF
More article options
Vol. 43. Issue 9.
Pages 479-484 (January 2007)
Original Articles
Full text access
Expression of Proteins Associated With Multidrug Resistance to Chemotherapy in Lung Cancer
Visits
5497
Alfredo Paredes Larioa, Carlos Blanco Garcíab, Miguel Echenique Elizondoc,
Corresponding author
gepecelm@sc.ehu.es

Correspondence: Dr. M. Echenique Elizondo. Facultad de Medicina. UD San Sebastián. Universidad del País Vasco. P.° Dr. Begiristain, 105. 20014 San Sebastián. Guipúzcoa. España
, Carmen Lobod
a Servicio de Oncología, Hospital Donostia, San Sebastián, Guipúzcoa, Spain
b Servicio de Radioterapia, Hospital Donostia, San Sebastián, Guipúzcoa, Spain
c Departamento de Cirugía, Facultad de Medicina, Universidad del País Vasco, San Sebastián, Guipúzcoa, Spain
d Servicio de Patología, Hospital Donostia, San Sebastián, Guipúzcoa, Spain
This item has received
Article information
Abstract
Bibliography
Download PDF
Statistics
Objective

Membrane transporters are proteins that play a crucial role in resistance to chemotherapy. The aim of this study was to assess the influence of membrane transporter protein expression on chemotherapeutic response.

Material and methods

One hundred and forty seven samples of tumor tissue were collected from 143 patients; 35 samples were obtained by bronchoscopy and 112 were surgical specimens. A total of 101 samples from 99 patients were adequate for study. Cryopreserved samples were subjected to immunohistochemical analysis to detect 3 proteins associated with multidrug resistance: P-glycoprotein (Pgp), multidrugresistance–associated protein 1 (MRP1), and lung resistance protein (LRP).

Results

In 16 cases none of the proteins were expressed. A single protein was expressed in 32 (3 Pgp, 11 MRP1, and 18 LRP); 2 in 34 cases (24 Pgp and LRP; 5 MRP1 and Pgp; 5 MRP1 and LRP); and all 3 in 17 cases. No significant relationship was found between age and the expression of Pgp (P =.74), MRP1 (P =.95), or LRP (P =.26). Nor were there significant differences in number (P =.72) or type of coexpressed proteins (P =.39) by sex, by tumor stage (number, P =.55; type, P =.21), or by tumor grade (number, P =.59; type, P =.51). There was a highly significant trend toward coexpression of Pgp and LRP (P <.01) but not of Pgp and MRP1 (P =.18) or MRP1 and LRP (P =.26). MRP1 was expressed less often in adenocarcinoma. LRP was expressed less often in squamous cell carcinoma than in adenocarcinoma and undifferentiated large cell carcinoma. Coexpression of Pgp, MRP1, and LRP was observed most often in squamous cell carcinoma.

Conclusions

Proteins associated with multidrug resistance are commonly expressed in lung cancer. Of the 3 proteins studied, LRP was the one most often found. Coexpression of more than 1 of the proteins was found in a considerable percentage of patients. Pgp was mainly found to be coexpressed with LRP. Pgp expression and the number of coexpressed proteins seemed to have a negative impact on response to chemotherapy.

Key words:
Multidrug-resistance proteins
Lung cancer
Chemotherapy
Objetivo

Las proteínas transportadoras de membrana desempeñan un papel esencial en la resistencia a la quimioterapia. El objetivo del estudio ha sido intentar valorar la influencia de su expresión en la respuesta a la quimioterapia.

Material y métodos

Se recogieron 147 muestras tumorales procedentes de 143 pacientes. De ellas, 35 eran broncoscó-picas y 112 quirúrgicas. Resultaron válidas para el estudio 101, correspondientes a 99 pacientes. Las muestras tumorales criocongeladas se sometieron a análisis inmunohistoquímico para la detección de las 3 proteínas relacionadas con resistencia a múltiples fármacos (MDR-proteínas): Pgp, Mrp1 y Lrp.

Resultados

No expresaban ninguna proteína 16 casos. Se encontró expresión de una sola proteína en 32 casos (3 Pgp, 11 Mrp1 y 18 Lrp); de 2 proteínas en 34 casos (24 Pgp + Lrp; 5 Mrp1 + Pgp; 5 Mrp1 + Lrp), y de las 3 proteínas en 17. No encontramos relación significativa entre la edad y la expresión de Pgp (p = 0,74), Mrp1 (p = 0,95) o Lrp (p = 0,26). No observamos diferencias significativas entre sexos por el número (p = 0,72) ni por el tipo (p = 0,39) de proteínas expresadas de forma simultánea. Tampoco detectamos diferencias significativas entre estadios tumorales por el número (p = 0,55) ni por el tipo (p = 0,21) de MDR-proteínas. No encontramos diferencias significativas entre los diferentes grados histológicos ni por el número (p = 0,59) ni por el tipo (p = 0,51) de MDR-proteínas expresadas simultáneamente. La tendencia de Pgp y Lrp a expresarse asociadas resultó muy significativa (p < 0,01), pero no fue así en el caso de la asociación de Pgp y Mrp1 (p = 0,18) o Mrp1 y Lrp (p = 0,26). Los adenocarcinomas expresaron menos la Mrp1. Los carcinomas escamosos expresaron menos Lrp que los adenocarcinomas y carcinomas indiferenciados de células grandes. Los carcinomas escamosos fueron los que con más frecuencia expresaron Pgp, Mrp1 y Lrp de forma simultánea.

Conclusiones

El cáncer de pulmón expresa con frecuencia MDR-proteínas. De las 3 estudiadas (Pgp, Mrp1 y Lrp), la más frecuentemente observada fue Lrp. En una proporción importante de pacientes se halló expresión simultánea de más de una MDR-proteína. Pgp se expresó fundamentalmente asociada a Lrp. La expresión de Pgp y el número de proteínas expresadas simultáneamente parecieron afectar de forma negativa a la respuesta a la quimioterapia.

Palabras clave:
MDR-proteínas
Cáncer de pulmón
Quimioterapia
Full text is only aviable in PDF
REFERENCES
[1]
WT Beck, WS Dalton.
Mechanisms of drug resistance.
Cancer, principles and practice of oncology, 6th ed., pp. 498-512
[2]
E Chu, VT DeVita.
Principles of cancer management: chemotherapy.
Cancer, principles and practice of oncology, 6th ed., pp. 289-386
[3]
JH Goldie, AJ Coldman.
A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate.
Cancer Treat Rep, 63 (1979), pp. 1727-1731
[4]
HE Skipper, L Simpson-Herren.
Relationship between tumor stem cell heterogeneity and responsiveness to chemotherapy.
Important advances in oncology, pp. 63-77
[5]
FA Shepherd, DN Carney.
Treatment of NSCLC: chemotherapy.
Textbook of lung cancer, pp. 213-242
[6]
K Nishio, T Nakamura, Y Koh, T Suzuki, H Fukumoto, N Saijo.
Drug resistance in lung cancer.
Curr Opin Oncol, 11 (1999), pp. 109-115
[7]
LA Doyle.
Mechanisms of drug resistance in human lung cancer cells.
Semin Oncol, 20 (1993), pp. 326-337
[8]
I Tamm, F Schriever, B Dörken.
Apoptosis: implications of basic research for clinical oncology.
Lancet Oncol, 2 (2001), pp. 33-42
[9]
MM Gottesman, T Fojo, SE Bates.
Multidrug resistance in cancer: role of ATP-dependent transporters.
Nature Reviews Cancer, 2 (2002), pp. 48-58
[10]
CS Morrow, KH Cowan.
Mechanisms of antineoplastic drug resistance.
Cancer, principles and practice of oncology, 4th ed., pp. 340-348
[11]
B Tan, D Piwnica-Worms, L Ratner.
Multidrug resistance transporters and modulation.
Curr Opin Oncol, 12 (2000), pp. 450-458
[12]
K Dano.
Active outward transport of daunomycin in resistant Ehrlich ascites tumor cells.
Biochim Biophys Acta, 323 (1973), pp. 466-483
[13]
P Borst, R Evers, M Kool, J Wijnholds.
A family of drug transporters: the multidrug resistance-associated proteins.
J Natl Cancer Inst, 92 (2000), pp. 1295-1302
[14]
WS Dalton.
Overcoming the multidrug-resistant phenotype.
Cancer, principles and practice of oncology, 4th ed., pp. 2655-2666
[15]
ML Slovak, JP Ho, SP Cole, RG Deeley, L Greenberger, EG de Vries, et al.
The LRP gene encoding a major vault protein associated with drug resistance maps proximal to MRP on chromosome 16: evidence that chromosome breakage plays a key role in MRP or LRP gene amplification.
Cancer Res, 55 (1995), pp. 4214-4219
[16]
GL Scheffer, PL Wijngaard, MJ Flens, MA Izquierdo, ML Slovak, HM Pinedo, et al.
The drug resistance-related protein LRP is the human major vault protein.
Nature Med, 1 (1995), pp. 578-582
[17]
NL Kedersha, LH Rome.
Isolation and characterization of a novel ribonucleoprotein particle: large structures contain a single species of small RNA.
J Cell Biol, 103 (1986), pp. 699-709
[18]
P Boyle, S Gandini, N Gray.
Epidemiology of lung cancer: a century of great success and ignominious failure.
Textbook of lung cancer, pp. 13-25
[19]
MF Simon, M Schindler.
Cell biological mechanisms of multidrug resistance in tumors.
Proc Natl Acad Sci U S A, 91 (1994), pp. 3497-3504
[20]
JA Radosevich, PG Robinson, LS Rittmann-Grauer, B Wilson, JP Leung, ML Maminta, et al.
Immunohistochemical analysis of pulmonary and pleural tumors with the monoclonal antibody HYB-612 directed against the multidrug-resistance (MDR-1) gene product P-glycoprotein.
Tumor Biol, 10 (1989), pp. 252-257
[21]
EK Rowinsky, AW Tolcher.
Antimicrotubule agents.
Cancer, Principles and Practice of Oncology, 6th ed., pp. 431-452
[22]
TW Beer, DC Rowlands, J Crocker.
Detection of the multidrug resistance marker P-glycoprotein by immunohistochemistry in malignant lung tumors.
Thorax, 51 (1996), pp. 526-529
[23]
GV Scagliotti, S Novello, G Selvaggi.
Multidrug resistance in non-small-cell lung cancer.
Ann Oncol, 10 (1999), pp. 83-86
[24]
I Sugawara, H Yamada, H Nakamura, T Sumizawa, S Akiyama, et al.
Preferential expression of the multidrug-resistance-associated protein (MRP) in adenocarcinoma of the lung, 64 (1995), pp. 322-325
[25]
J Zhou, K Higashi, Y Ueda, Y Kodama, D Guo, F Jisaki, et al.
Expression of multidrug resistance protein and messenger RNA correlate with (99m) Tc-MIBI imaging in patients with lung cancer.
J Nucl Med, 42 (2001), pp. 1476-1483
[26]
H Thomas, HM Coley.
Overcoming multidrug resistance in cancer: an update on the clinical strategy of inhibiting P-glycoprotein.
Cancer Control, 10 (2003), pp. 159-165
[27]
SE Bates, S Bakke, M Kang, RW Robey, S Zhai, P Thambi, et al.
Reversal of multidrug resistance: lessons from clinical oncology.
Novartis Foundation Symposium, 243 (2002), pp. 83-102
[28]
M Oka, M Fukuda, A Sakamoto, H Takatani, M Fukuda, H Soda, et al.
The clinical role of MDR1 gene expression in human lung cancer.
Anticancer Res, 17 (1997), pp. 721-724
[29]
Y Oshika, M Nakamura, T Tokunaga, Y Fukushima, Y Abe, Y Ozeki, et al.
Multidrug resistance-associated protein and mutant p53 protein expression in non-small cell lung cancer.
Mod Pathol, 11 (1998), pp. 1059-1063
[30]
Y Segawa, T Ohnoshi, S Hiraki, H Ueoka, K Kiura, H Kamei, et al.
Immunohistochemical detection of P-glycoprotein and carcinoembryonic antigen in small cell lung cancer: with reference to predictability of response to chemotherapy.
Acta Med Okayama, 47 (1993), pp. 181-189
[31]
E Ota, Y Abe, Y Oshika, Y Ozeki, M Iwasaki, H Inoue, et al.
Expression of the multidrug resistance-associated protein (MRP) gene in non-small-cell lung cancer.
Br J Cancer, 72 (1995), pp. 550-554
[32]
GD Pennock, WS Dalton, WR Roeske, CP Appleton, K Mosley, P Plezia, et al.
Systemic toxic effects associated with high dose verapamil infusion and chemotherapy administration.
J Natl Cancer Inst, 83 (1991), pp. 105-110
[33]
M Lu, J Wang, X Yi.
Clinical significance of the expression of lung resistance protein in non-small cell lung carcinomas.
Zhonghua Jie He He Hu Xi Za Zhi, 24 (2001), pp. 458-460
[34]
M Volm, J Mattern, B Samsel.
Overexpression of P-glycoprotein and glutathione S-transferase-pi in resistant non-small-cell lung carcinomas of smokers.
Br J Cancer, 64 (1991), pp. 700-704
[35]
T Harada, S Ogura, K Yamazaki, I Kinoshita, T Itoh, H Isobe, et al.
Predictive value of expression of p53, Bcl-2 and lung resistance-related protein for response to chemotherapy in non-small cell lung cancers.
Cancer Science, 94 (2003), pp. 394-399
Copyright © 2007. Sociedad Española de Neumología y Cirugía Torácica (SEPAR)
Archivos de Bronconeumología
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?