Journal Information
Vol. 44. Issue 12.
Pages 671-678 (January 2008)
Share
Share
Download PDF
More article options
Vol. 44. Issue 12.
Pages 671-678 (January 2008)
Original Articles
Full text access
Diaphragmatic Response Is Influenced by Previous Muscle Activity
Visits
4335
Joaquim Geaa,b,c,
Corresponding author
jgea@imim.es

Correspondence: Dr J. Gea Servei de Pneumologia, Hospital del Mar-IMIM Pg. Marítim, 2708003 Barcelona, Spain Correo electrónico
, Juan B. Gáldiza,b,d, Norman Comtoisa, Ercheng Zhua,b, José Antonio Fiza,e, Igor Salazkina, Alejandro Grassinoa,b
a Hôpital de Notre-Dame, Centre Hospitalier de l'Université de Montréal (CHUM), Université de Montréal, Montréal, Québec, Canada
b Meakins-Christie Laboratorios, McGill University, Montréal, Quebec, Canada
c Servei de Pneumologia-URMAR, Hospital del Mar-IMIM, Departament CEXS, Universitat Pompeu Fabra, Barcelona, CIBER de Enfermedades Respiratorias (CibeRes), Spain
d Servicio de Neumología, Hospital de Cruces, Universidad del País Vasco, Baracaldo, Vizcaya, Spain
e Servei de Pneumologia, Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain
This item has received
Article information
Abstract
Bibliography
Download PDF
Statistics
Objective

Previous muscle activity can alter muscle contractility and lead to strength underestimation or overestimation in functional measurements. The objective of this study was to evaluate changes in the maximum pressure produced by the diaphragm after different series of spontaneous near-to-maximal isometric contractions.

Methods

Duplicate studies were performed on 6 dogs with a mean (SD) weight of 26 (7) kg. The supramaximal response of the diaphragm was achieved by simultaneous supramaximal stimulation of both phrenic nerves, both under basal conditions and after series of 5, 10, and 20 spontaneous inspiratory efforts against the occluded airway, performed before and after spinal anesthesia (which eliminates the ventilatory contribution of the intercostal muscles). The response was measured using the twitch gastric pressure (Pga) and twitch esophageal pressure (Pes) and by muscle shortening (sonomicrometry).

Results

The short series of 5 inspiratory efforts and, in particular, the medium series of 10 efforts produced potentiation of the contractile response, with a rise in the Pga from 3.2 (0.4) cm H2O to 3.7 (0.3) cm H2O, and from 3.5 (0.3) cm H2O to 3.9 (0.3) cm H2O, respectively (P=.05 in both cases). The potentiation was somewhat greater after subarachnoid anesthesia (an increase in the Pga of 21% after the medium series of 10 efforts with anesthesia vs 11% without anesthesia). However, the long series of 20 efforts produced a fall in the response, with a decrease in the Pga from 3.2 (0.4) cm H2O to 2.5 (0.3) cm H2O (P<.05), probably due to fatigue overcoming the effect of potentiation.

Conclusions

Previous effort affects the contractile capacity of the diaphragm and it is difficult to predict the predominance of fatigue or potentiation in the response. This factor must be taken into account when determining the maximum respiratory pressures in daily clinical practice.

Key words:
Respiratory muscles
Potentiation
Fatigue
Respiratory pressures
Objetivo

La actividad previa puede modificar la contractilidad muscular, lo que puede conducir a la infra o supraestimación de la fuerza en las determinaciones funcionales. El presente trabajo se ha propuesto como objetivo valorar cambios en la presión máxima generada por el diafragma tras diferentes series de contracciones isométricas espontáneas y cuasi máximas.

Métodos

Se estudiaron por duplicado 6 perros con un peso medio ± desviación estándar de 26 ± 7 kg. Se obtuvo la respuesta supramáxima del diafragma —presiones gástrica (Pgatw) y esofágica (Pestw) inducidas por estimulación frénica bilateral, y acortamiento muscular (sonomicrometría)— por estimulación simultánea supramáxima de ambos nervios frénicos, tanto en situación basal como tras series cortas (5), medianas (10) y largas (20) de esfuerzos inspiratorios espontáneos contra la vía aérea ocluida, antes y después de administrar anestesia subaracnoidea (elimina la contribución ventilatoria de los músculos intercostales).

Resultados

La serie corta y, sobre todo, la serie mediana provocaron la potenciación de la respuesta contráctil (Pgatw de 3,2 ± 0,4 a 3,7 ± 0,3, y de 3,5 ± 0,3 a 3,9 ± 0,3 cmH2O, respectivamente; p < 0,05 ambas). La potenciación fue algo superior con anestesia subaracnoidea (un 21 frente al 11% sin anestesia, para la Pgatw tras las series medianas). La serie larga provocó, sin embargo, una disminución de la respuesta (Pgatw: 3,2 ± 0,4 a 2,5 ± 0,3 cmH2O; p < 0,05), probablemente por predominio de la fatiga sobre la potenciación.

Conclusiones

Los esfuerzos previos determinan la capacidad contráctil del diafragma y resulta difícil predecir el predominio de fatiga o de potenciación en la respuesta. Este factor debería tenerse en cuenta al determinar las presiones respiratorias máximas en la clínica diaria.

Palabras clave:
Músculos respiratorios
Potenciación
Fatiga
Presiones respiratorias
Full text is only available in PDF
References
[1]
M Orozco-Levi, J Gea.
Músculos respiratorios: biología y fisiología.
Fisiología y biología respiratorias, pp. 41-60
[2]
JA Fiz, J Morera.
Exploración funcional de los músculos respiratorios.
Arch Bronconeumol, 36 (2000), pp. 391-410
[3]
J Gea, JM Espadaler, R Guiu, X Aran, L Seoane, JM Broquetas.
Diaphragmatic activity induced by cortical stimulation: surface versus esophageal electrodes.
J Appl Physiol, 74 (1993), pp. 655-658
[4]
X Aran, J Gea, R Guiu, MC Aguar, J Sauleda, JM Broquetas.
Comparación de tres maniobras diferentes para la obtención de la presión transdiafragmática máxima.
Arch Bronconeumol, 28 (1992), pp. 112-115
[5]
J Gea, X Aran, M Orozco-Levi, J Sauleda, MC Aguar, JM Broquetas.
Comparación entre los diferentes métodos de evaluación de la presión transdiafragmática. Utilidad en pacientes con EPOC.
Arch Bronconeumol, 29 (1993), pp. 328-331
[6]
IM Luo, N Hart, N Mustfa, WD Man, GF Rafferty, MI Polkey, et al.
Reproducibility of twitch and sniff transdiaphragmatic pressures.
Respir Physiol Neurobiol, 132 (2002), pp. 301-306
[7]
JA Fiz, JM Montserrat, C Picado, V Plaza, A Agustí-Vidal.
How many manoeuvres should be done to measure maximal inspiratory mouth pressure in patients with chronic airflow obstruction?.
Thorax, 44 (1989), pp. 419-421
[8]
S Volianitis, AK McConnell, DA Jones.
Assessment of maximum inspiratory pressure. Prior submaximal respiratory muscle activity (“warm-up”) enhances maximum inspiratory activity and attenuates the learning effect of repeated measurement.
Respiration, 68 (2001), pp. 22-27
[9]
JM Mador, UJ Magalang, TJ Kufel.
Twitch potentiation following voluntary diaphragmatic contraction.
Am J Respir Crit Care Med, 149 (1994), pp. 739-743
[10]
A Grassino, PT Macklem.
Respiratory muscle fatigue and ventilatory failure.
Annu Rev Med, 35 (1984), pp. 625-647
[11]
F Bellemare, A Grassino.
Force reserve of the diaphragm in patients with chronic obstructive pulmonary disease.
J Appl Physiol, 55 (1983), pp. 8-15
[12]
F Hu, A Comtois, E Shadram, A Grassino.
Effect of separate hemidiaphragm contraction on left phrenic artery flow and O2 consumption.
J Appl Phsyiol, 69 (1990), pp. 86-90
[13]
F Hu, A Comtois, AE Grassino.
Contraction-dependent modulations in regional diaphragmatic blood flow.
J Appl Physiol, 68 (1990), pp. 2019-2028
[14]
C Sinderby, L Lindström, N Comtois, AE Grassino.
Effects of diaphragm shortening on the mean action potential conduction velocity in canines.
J Physiol, 490 (1996), pp. 207-214
[15]
D Laporta, A Grassino.
Assessment of transdiaphragmatic pressure in humans.
J Appl Physiol, 58 (1985), pp. 1469-1476
[16]
GT Ferguson.
Use of twitch pressures to assess diaphragmatic function and central drive.
J Appl Physiol, 77 (1994), pp. 1705-1715
[17]
E Agostini, H Rahn.
Abdominal and thoracic pressures at different lung volumes.
J Appl Physiol, 15 (1960), pp. 1087-1092
[18]
RD Hubmayr, WJ Litchy, PC Gay, SB Nelson.
Transdiaphragmatic twitch pressure: effects of lung volume and chest wall shape.
Am Rev Respir Dis, 139 (1989), pp. 647-652
[19]
F Bellemare, B Bigland-Ritchie.
Assessment of human diaphragm strength and activation using phrenic nerve stimulation.
Resp Physiol, 58 (1984), pp. 263-277
[20]
S Levine, D Hansen.
Low frequency diaphragmatic fatigue in spontaneously breathing humans.
J Appl Physiol, 64 (1988), pp. 672-680
[21]
AA Vandervoort, J Quinlan, AJ McComas.
Twitch potentiation after voluntary contraction.
Exp Neurol, 81 (1983), pp. 141-152
[22]
J Duchateau, K Hainaut.
Nonlinear summation of contractions in striated muscle. II. Potentiation of intracellular Ca2+ movements in single barnacle muscle fibres.
J Muscle Res Cell Motil, 7 (1986), pp. 18-24
[23]
KP Rixon, HS Lamont, MG Bemben.
Influence of type of muscle contraction, gender, and lifting experience on postactivation potentiation performance.
J Strength Cond Res, 21 (2007), pp. 500-505
[24]
J Gea, JM Espadaler, X Aran, A Valls, J Sauleda, JM Broquetas.
Estimulación transcraneal magnética del diafragma bajo diversas situaciones ventilatorias.
Arch Bronconeumol, 28 (1992), pp. 260-263
[25]
AJ McComas.
Neuromuscular transmission.
Skeletal muscle: form and function,
[26]
F Bellemare, A Grassino.
Evaluation of human diaphragm fatigue.
J Appl Physiol, 53 (1982), pp. 1196-1206
[27]
L Grimby, J Hannerz.
Firing rate and recruitment order of toe extensor motor units in different modes of voluntary conraction.
J Physiol, 264 (1977), pp. 865-879
[28]
R Stajanovic, Z Todorovic, Z Nesic, S Vuckovic, N Cerovac-Cosic, M Prostran.
NG-nitro-L-arginine methyl ester-induced potentiation of the effect of aminophylline on rat diaphragm: the role of extracellular calcium.
J Pharmacol Sci, 96 (2004), pp. 493-498
[29]
Z Todorovic, R Stojanovic, Z Nesic, N Divac, N Vojvodic, N Cerovac-Cosic, et al.
Type of electrical stimulation influences diaphragm response to adrenoceptor and calcium channel modulators: the role of extracellular and intracellular calcium events.
J Pharmacol Sci, 102 (2006), pp. 347-353
[30]
M Aubier, D Murciano, Y Lecocguic, N Viires, R Pariente.
Bilateral phrenic stimulation: a simple technique to assess diaphragmatic fatigue in humans.
J Appl Physiol, 58 (1985), pp. 58-64
[31]
JR Fowles, HJ Green.
Coexistence of potentiation and low-frequency fatigue during voluntary exercise in human skeletal muscle.
Can J Phsyiol Pharmacol, 81 (2003), pp. 1092-1100
[32]
DG Behm, DC Button, G Barbour, JC Butt, WB Young.
Conflicting effects of fatigue and potentiation on voluntary force.
J Strength Cond Res, 18 (2004), pp. 365-372
[33]
E Barreiro, JB Gáldiz, M Mariñán, FJ Álvarez, SN Hussain, J Gea.
Respiratory loading intensity and diaphragm oxidative stress: N-acetylcysteine effects.
J Appl Physiol, 100 (2006), pp. 555-563
[34]
SE Alway, RL Hughson, HJ Green, AE Patla, JS Frank.
Twitch potentiation after fatiguing exercise in man.
Eur J Appl Physiol, 56 (1987), pp. 461-466
[35]
LL Rankin, RM Enoka, KA Volz, DG Stuart.
Coexistence of twitch potentiation and tetanic force decline in hindlimb muscle.
J Appl Physiol, 65 (1988), pp. 2687-2695
[36]
AK McConnell, AJ Copestake.
Maximum static respiratory pressures in healthy elderly men and women: issues of reproducibility and interpretation.
Respiration, 66 (1999), pp. 251-258
[37]
JO Maillard, L Burdet, G van Melle, JW Fitting.
Reproducibility of twitch mouth pressure, sniff nasal inspiratory pressure, and maximal inspiratory pressure.
Eur Respir J, 11 (1998), pp. 901-905
[38]
PJ Wijkstra, TW van der Mark, M Boezen, R van Altena, DS Postma, GH Köeter.
Peak inspiratory mouth pressure in healthy subjects and in patients with COPD.
Chest, 107 (1995), pp. 652-656
[39]
TK Aldricht, P Spiro.
Maximal inspiratory pressure: does reproducibility indicate full effort?.
Thorax, 50 (1995), pp. 40-43
[40]
JA Fiz, M Gallego, J Izquierdo, J Ruiz, J Roig, J Morera.
Variation in maximum inspiratory and expiratory pressure after application of inspiratory loads in patients with COPD.
Chest, 97 (1990), pp. 618-620
[41]
Gea J, Gáldiz JB, Comtois N, Zhu E, Salazkin I, Fiz JA, et al. Modificaciones en la actividad del diafragma inducidas por laparotomía media y cambios en la rigidez de la pared abdominal. Arch Bronconeumol. In press, 2008.
[42]
FC Chang.
Effects of pentobarbital on respiratory functional dynamics in chronically instrumented guinea pigs.
Brain Res Bull, 26 (1991), pp. 123-132
[43]
NM Siafakas, M Bonora, B Duron, H Gautier, J Milic-Emili.
Dose effect of pentobarbital sodium on control of breathing in cats.
J Appl Physiol, 55 (1983), pp. 1582-1592
[44]
DO Warner, MJ Joyner, EL Ritman.
Anesthesia and chest wall function in dogs.
J Appl Physiol, 76 (1994), pp. 2802-2813
[45]
JB Gáldiz, J Palacio, FJ Álvarez, N Hernández, M Mariñán, J Gea.
Estructura básica de los músculos respiratorios y periféricos enel perro Beagle.
Arch Bronconeumol, 38 (2002), pp. 272-277

This study was funded by a grant from the Medical Research Council of Canada. The period spent by J. Gea and J.B. Gáldiz in Montréal was funded in part by the continuing education fund to support researchers, of the Health Research Fund (Fondo de Investigación Sanitaria or FIS) of the Spanish Ministry of Health.

Copyright © 2008. Sociedad Española de Neumología y Cirugía Torácica (SEPAR)
Archivos de Bronconeumología
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?