Journal Information
Vol. 35. Issue 10.
Pages 471-476 (November 1999)
Share
Share
Download PDF
More article options
Vol. 35. Issue 10.
Pages 471-476 (November 1999)
Full text access
Densidad capilar y función respiratoria en el músculo intercostal externo
Capillary density and respiratory function in the externa! intercostal muscle
Visits
8336
M.A. Jiménez-Fuentesa, J. Geaa,d,
Corresponding author
jgea@imim.es

Correspondencia: Servei de Pneumoiogia. Hospital del Mar-IMIM. Pg. Marítim, 27. 08003 Barcelona.
, M.C. Aguara, J. Minguellab,e, J. Lloretac,d, Miquel Féleza,d, Joan Broquetasa,e
a Servicios de Neumología, Unitat de Recerca Respiratoria-Ambiental. Hospital del Mar-IMIM, Barcelona
b Cirugía Torácica, Unitat de Recerca Respiratoria-Ambiental. Hospital del Mar-IMIM, Barcelona
c Anatomía Patológica. Unitat de Recerca Respiratoria-Ambiental. Hospital del Mar-IMIM, Barcelona
d Universitat Pompeu Fabra. Universitat Autónoma de Barcelona. Barcelona
e Universitat Autónoma de Barcelona, Barcelona
This item has received
Article information
Abstract
Bibliography
Download PDF
Statistics

Las alteraciones en la función pulmonar se han relacionado con modificaciones estructurales adaptativas en los músculos respiratorios.

Objetivo

Evaluar la densidad capilar (Dcap) del músculo intercostal externo (IE) en pacientes con EPOC, y sus eventuales relaciones con la función respiratoria.

Material y métodos

Se incluyeron 42 individuos (61±9 años), en los que se evaluó la función pulmonar convencional y la de los músculos respiratorios (presiones máximas en reposo y prueba de resistencia según técnica de Martyn). La muestra incluyó 10 sujetos con función pulmonar normal y 32 pacientes con EPOC (FEV1, entre 13 y 78% ref), en fase estable y sin insuficiencia respiratoria (PaO2>60mmHg). En todos se realizó biopsia local del IE, a nivel del 5.° espacio intercostal, línea medio-axilar anterior, lado no dominante. La muestra fue procesada para morfometría, tipificándose las fibras en las tinciones de ATPasa, y cuantificándose los capilares en la de tricrómico de Gomori.

Resultados

El diámetro medio global fue de 61±10μm, predominando las fibras de tipo I (56±11%). La Dcap fue de 2,8±0,6 capilares/fibra (equivalente a 1,02±0,37 capilares/mm2 de superficie fibrilar), presentando los pacientes con EPOC grave (FEV1<50% ref) una cifra sensiblemente superior a los controles (3,0±0,6 frente a 2,3±0,5 capilares/ fibra, p<0,01), y correlacionando inversamente esta variable con el FEV1 (r=-0,395, p<0,01). La capilaridad del músculo no evidenció relación con el resto de variables funcionales, incluyendo las de función muscular respiratoria e intercambio de gases.

Conclusión

La remodelación estructural de los músculos IE en pacientes con EPOC incluye también un aumento en la densidad de sus capilares interfibrilares. Este aumento es proporcional a la severidad de la obstrucción y probablemente refleja un fenómeno de índole adaptativa.

Palabras clave:
Músculos respiratorios
Vasos sanguíneos
Adaptación

Changes in lung function have been related to adaptive structural modifications in respiratory muscles.

Objective

To evaluate the capillary density (Dcap) of the external intercostal muscle in patients with chronic obstructive pulmonary disease (COPD), and its possible relation to respiratory function.

Methods

Forty-two individuals (61±9 years oíd) underwent conventional lung function testing and evaluation of respiratory muscles (maximum pressures at rest and a tolerance test using Martyn's technique). The sample included 10 subjects with normal lung function and 32 COPD patients (FEV1 between 13 and 78% of reference), in stable phase and with no respiratory insufficiency (PaO2>60mmHg). A local biopsy of the external intercostal muscle was taken from all subjects at the fifth intercostal space (anterior axile) on the non-dominant side. The sample was processed for morphometry and fiber typing with ATPase staining and for quantifying capillarity with Gomori's trichrome staining.

Results

The mean diameter was 61±10μm, with type I fibers predominating (56±11%). Dcap was 2.8±0.6 capillaries/ fiber (equivalent to 1.02±0.37 capillaries/mm2 of fibrillary surface). The number of capillaries/fiber was significantly higher in patients with severe COPD (FEV1 <50% ref) than in controls (3.0±0.6 versus 2.3±0.5, p<0.01) and was inversely related to FEV1 (r=-0.395, p<0.01). Muscle capillarity was unrelated to other function variables, including markers of respiratory muscle function and gas exchange.

Conclusion

The structural remodelling of external intercostal muscles in COPD patients aiso includes an increase in density of interfibrillary capillaries. This increase is proportional to the severity of obstruction and probably reflects an adaptive phenomenon.

Key words:
Respiratory muscles
Blood vessels
Adaptitation
Full text is only aviable in PDF
Bibliografía
[1.]
Ch. Roussos, P.T. Macklem.
Diaphragmatic fatigue in man.
J Appi Physiol, 43 (1977), pp. 189-197
[2.]
A. Grassino, T. Clanton.
Respiratory muscle fatigue.
Sem resp Med, 12 (1991), pp. 305-321
[3.]
A. De Troyer, S. Kelly, P.T. Macklem.
Mechanic of intercostal space and action of extemal and internal intercostal muscles.
J Clin Invest, 75 (1985), pp. 850-895
[4.]
A. Taylor.
The contribution of the intercostal muscles to the effort of respiration in man..
J Physiol (London), 151 (1960), pp. 390-402
[5.]
G.H. Koepke, E.M. Smith, A.J. Murphy, D.G. Dickinson.
Sequence of action of the diaphragm and intercostal muscles during respiration.
I. Inspiration. Arch Phys Med Rehabil, 40 (1959), pp. 337-342
[6.]
M.G. Sampson, A. De Troyer.
Role of intercostal muscles in the rib cage distortions produced by inspiratory loads.
J Appl Physiol, 52 (1982), pp. 517-523
[7.]
J. Sauleda, J. Gea, M. Orozco-Levi, J. Corominas, J. Minguella, C. Aguar, et al.
Structure and function relationships of the respiratory muscles.
Eur Respir J, 11 (1998), pp. 906-911
[8.]
M. Orozco-Levi, J. Gea, J. Lloreta, M. Félez, J. Minguella, S. Serrano, et al.
Subcellular adaptation of the human diaphragm in chronic obstructive pulmonary disease.
Eur Respir J, 13 (1999), pp. 371-378
[9.]
S. Levine, L. Kaiser, J. Leferovich, B. Tikunov.
Cellular adaptations in the diaphragm in chronic obstructive pulmonary disease.
N Engl J Med, 337 (1997), pp. 1.799-1.806
[10.]
M. Orozco-Levi, J. Gea, M.C. Aguar, M.A. Félez, M.A. Jiménez-Fuentes, J.M. Broquetas.
Ultraestructural changes in the diaphragm of COPD patients: Sarcomere adaptability.
Resp Crit Care Med, 151 (1995), pp. 806
[11.]
J. Roca, J. Sanchís, A. Agustí-Vidal, F. Segarra, D. Navajas, R. Rodríguez-Roisín, et al.
Spirometric reference valúes for a mediterranean population.
Bull Eur Physiopathol Resp, 22 (1986), pp. 217-224
[12.]
N.B. Pride, P. Vermeire.
Deftnition and differential diagnosis.
Management of chronic obstructive pulmonary disease., pp. 2-5
[13.]
J. Roca, F. Burgos, J.A. Barberá, J. Sunyer, R. Rodríguez-Roisín, J. Castell-Sagué, et al.
Prediction equations for plethysmographic lung volumes.
Respir Med, 92 (1998), pp. 454-460
[14.]
J. Roca, R. Rodríguez-Roisín, E. Cobo, F. Burgos, J. Pérez, J.L. Clausen.
Single-breath carbon monoxide diuffusing capacity (DLco) prediction equations for a mediterranean population.
Am Rev Respir Dis, 141 (1990), pp. 1.026-1.032
[15.]
S.H. Wilson, N.T. Cooke, R.H.T. Edwards, S.G. Spiro.
Predicted normal values for maximal respiratory pressures in Caucasian adults and children.
Thorax, 39 (1984), pp. 535-538
[16.]
J. Gea, M. Orozco-Levi, X. Aran, M.C. Aguar, J. Sauleda, J.M. Broquetas.
Modificaciones de la maniobra de sniff para la determinación de la Pdi máxima en pacientes conectados a circuitos externos.
Arch Bronconeumol, 29 (1993), pp. 168-170
[17.]
J.B. Martyn, R.H. Moreno, P.D. Paré, R.L. Pardy.
Measurement of inspiratory muscle performance with incremental threshold loading.
Am rev Respir Dis, 135 (1987), pp. 919-923
[18.]
V. Dubowitz, M.H. Brooke.
Muscle biopsy: a practical approach.
2.ª, Baillière Tindall, (1985),
[19.]
M. Mizuno, C. Juel, T. Bro-Ramussen, E. Mygind, B. Schibye, B. Saltin.
Limb skeletal muscle adaptation in athletes following training at altitude.
J Appl Physiol, 68 (1990), pp. 496-502
[20.]
D.L. Costil, E.F. Coyle, W.F. Fink, G.R. Lesmes, F.A. Witzmann.
Adaptations in skeletal muscle following strength training.
J Appl Physiol, 46 (1979), pp. 96-99
[21.]
P.A. Tesch, A. Torsson, P. Kaiser.
Muscle capillary supply and fiber type characteristics in weight and power lifters.
J Appl Physiol, 56 (1984), pp. 35-38
[22.]
G. Sjogaard.
Capillary supply and cross-sectional area of slow and fast twitch muscle fibres in man.
Histochemistry, 76 (1982), pp. 547-555
[23.]
P. Schantz.
Capillary supply in heavy-resistance trained non-postural human skeletal muscle.
Acta Physiol Scand, 117 (1983), pp. 153-155
[24.]
M. Mizuno, N.H. Secher.
Hystochemical characteristics of human expiratory and inspiratory muscles.
J Appl Physiol, 67 (1989), pp. 592-598
[25.]
M. Mizuno, N.H. Secher, B. Saltin.
Fibre types, capillary supply and enzyme activities in human intercostal muscles.
Clin Physiol, 5 (1985), pp. 121-135
[26.]
M.C. Aguar.
Estructura y función de los músculos respiratorios en la EPOC: Desarrollo de un modelo de biopsia ambulatoria [Tesis Doctoral).
Universitat Autónoma de Barcelona, (1995),
[27.]
B. Saltin, P.D. Gollnick.
Skeletal muscle adaptability. Significance for metabolism and performance.
Handbook of Physiology. Section 10: Skeletal muscle., pp. 555-631
[28.]
O. Mathieu-Costello, H. Hoppeler, E. Weibel.
Capillary tortuosity in skeletal muscles of mammals depends on muscle contraction.
J Appl Physiol, 66 (1989), pp. 1.436-1.442
[29.]
D.C. Poole, O. Mathieu-Costello, J.B. West.
Capillary tortuosity in rat soleus muscle is not affected by endurance training.
Am J Physiol, 256 (1989), pp. 1.110-1.116
[30.]
F. Maltais, A.A. Simard, C. Simard, J. Jobin, P. Desgagnés, P. LeBlanc.
Oxidative capacity of the skeletal muscle and lactic acid kinetics during exercise in normal subjects and in patients with COPD.
Am J Respir Crit Care Med, 153 (1996), pp. 288-293
[31.]
Aguar MC, Gea J, Orozco-Levi M, Lloreta J, Serrano S, Broquetas J. Cellular changes in the external intercostal muscle of patients with COPD. Eur Respir J Med (submitted).
[32.]
M. Tamm, M. Roth, M. Bihl, P. Eickelberg, P. Stulz, S. Perruchoud, et al.
Hypoxia-induced IL-6, 1L-8 and VEGF production is mediated by platelet-activating factor (PAF).
Am J Respir Crit Care Med, 153 (1996), pp. A636
[33.]
J. Gea, M. Pastó, M.A. Carmona, M. Félez, J. Palomeque, J. Broquetas.
Oxidative capacity is preserved but glycolitic activity is reduced in the diaphragm of severe COPD patients.
Am J Crit Care Med, 159 (1999), pp. A579
[34.]
M. Mizuno, N.H. Secher.
Histochemical characteristics of human expiratory and inspiratory intercostal muscles.
J Appl Physiol, 67 (1989), pp. 592-598
[35.]
W.M. Thrulbeck.
Diaphragm and body weight in emphysema.
Thorax, 33 (1978), pp. 483-487
[36.]
M.A. Jiménez-Fuentes, J. Gea, O. Pallás, F. Gallego, M. Félez, J. Broquetas.
Morfometría fibrilar del músculo intercostal externo. Comparación entre los lados dominante y no dominante en pacientes con EPOC severa..
Arch Bronconeumol, 4 (1998), pp. 189-193
Copyright © 1999. Sociedad Española de Neumología y Cirugía Torácica
Archivos de Bronconeumología
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?