Journal Information
Vol. 43. Issue 7.
Pages 366-372 (January 2007)
Share
Share
Download PDF
More article options
Vol. 43. Issue 7.
Pages 366-372 (January 2007)
Original Articles
Full text access
Analysis of Energy Expenditure in Adults With Cystic Fibrosis: Comparison of Indirect Calorimetry and Prediction Equations
Visits
5587
Casilda Olveira Fustera,
Corresponding author
gabrielm.olveira.sspa@juntadeandalucia.es

Correspondence: Dr. G. Olveira Fuster. Servicio de Endocrinología y Nutrición. Hospital Universitario Carlos Haya. Avda. Carlos Haya, s/n. 29010 Málaga. España
, Gabriel Olveira Fusterb, Antonio Dorado Galindoc, Alicia Padilla Galoc, Julio Merino Verdugoc, Francisco Miralles Lozanoc
a Unidad de Fibrosis Quística de Adultos, Servicio de Neumología, Hospital Universitario Carlos Haya, Málaga, Spain
b Unidad de Fibrosis Quística de Adultos, Servicio de Endocrinología y Nutrición, Hospital Universitario Carlos Haya, Málaga, Spain
c Servicio de Neumología, Hospital Universitario Carlos Haya, Málaga, Spain
This item has received
Article information
OBJECTIVE

Undernutrition, which implies an imbalance between energy intake and energy requirements, is common in patients with cystic fibrosis. The aim of this study was to compare resting energy expenditure determined by indirect calorimetry with that obtained with commonly used predictive equations in adults with cystic fibrosis and to assess the influence of clinical variables on the values obtained.

PATIENTS AND METHODS

We studied 21 patients with clinically stable cystic fibrosis, obtaining data on anthropometric variables, hand grip dynamometry, electrical bioimpedance, and resting energy expenditure by indirect calorimetry. We used the intraclass correlation coefficient (ICC) and the Bland–Altman method to assess agreement between the values obtained for resting energy expenditure measured by indirect calorimetry and those obtained with the World Health Organization (WHO) and Harris–Benedict prediction equations.

RESULTS

The prediction equations underestimated resting energy expenditure in more than 90% of cases. The agreement between the value obtained by indirect calorimetry and that calculated with the prediction equations was poor (ICC for comparisons with the WHO and Harris–Benedict equations, −; 0.47 and 0.41, respectively). Bland–Altman analysis revealed a variable bias between the results of indirect calorimetry and those obtained with prediction equations, irrespective of the resting energy expenditure. The difference between the values measured by indirect calorimetry and those obtained with the WHO equation was significantly larger in patients homozygous for the ΔF508 mutation and in those with exocrine pancreatic insufficiency.

CONCLUSIONS

The WHO and Harris–Benedict prediction equations underestimate resting energy expenditure in adults with cystic fibrosis. There is poor agreement between the values for resting energy expenditure determined by indirect calorimetry and those estimated with prediction equations. Underestimation was greater in patients with exocrine pancreatic insufficiency and patients who were homozygous for Δ F508.

Key words:
Cystic fibrosis
Energy expenditure
Indirect calorimetry
Nutrition
OBJETIVO

La desnutrición es frecuente en pacientes con fibrosis quística (FQ) e implica un desequilibrio entre la ingesta y los requerimientos. Nuestro objetivo ha sido calcular el gasto energético en reposo (GER) mediante calorimetría indirecta en adultos con FQ, compararlo con las fórmulas estimativas habitualmente empleadas y valorar la influencia de parámetros clínicos sobre el GER.

PACIENTES Y MÉTODOS

Estudiamos a 21 pacientes con FQ que se encontraban estables clínicamente. Se efectuaron medidas de parámetros antropométricos, dinamometría de mano, impedanciometría bioeléctrica y del GER medido por calorimetría indirecta (CI). Estudiamos la concordancia entre los valores del GER medidos y estimados por las fórmulas de la Organización Mundial de la Salud (OMS) y de Harris-Benedict (HB) mediante el coeficiente de correlación intraclase y el método de Bland-Altman.

RESULTADOS

Las ecuaciones infraestimaron el GER en más del 90% de los casos. La concordancia entre la CI y la estimada por las fórmulas fue escasa (para OMS, 0,47, y para HB, 0,41). Mediante el método de Bland-Altman observamos un sesgo variable entre la CI y las fórmulas, independiente de los valores del GER. La diferencia entre la CI respecto de la estimada por la fórmula de la OMS fue significativamente mayor en homocigóticos ΔF508 y en los pacientes con insuficiencia pancreática exocrina frente al resto.

CONCLUSIONES

En adultos con FQ, las fórmulas de la OMS y de HB infraestiman el GER. Hay una baja concordancia entre los valores del GER medidos y estimados. La infraestimación fue mayor en pacientes con insuficiencia pancreática exocrina y en homocigóticos ΔF508.

Palabras clave:
Fibrosis quística
Gasto energético
Calorimetría indirecta
Nutrición
Full text is only available in PDF
REFERENCES
[1]
E Kerem, S Conway, S Elborn, H Heijerman.
Standards of care for patients with cystic fibrosis: a European consensus.
J Cystic Fibrosis, 4 (2005), pp. 7-26
[2]
M Sinaasappel, M Stern, J Littlewood, S Wolfe, G Steinkamp, HGM Heijerman, et al.
Nutrition in patients with cystic fibrosis: a European Consensus.
J. Cystic Fibrosis, 1 (2002), pp. 51-75
[3]
J Yankaskas, BC Marshall, B Sufian, RH Simon, D Rodman.
Cystic fibrosis adult care. Consensus conference report.
Chest, 125 (2004), pp. 1-39
[4]
L Máiz, F Baranda, R Coll, C Prados, M Vendrell, A Escribano, et al.
Normativa del diagnóstico y tratamiento de la afectación respiratoria en la fibrosis quística.
Arch Bronconeumol, 37 (2001), pp. 316-324
[5]
E Kerem, M Corey, BS Kerem, J Rommens, D Markiewicz, H Levison, et al.
The relation between genotype and phenotype in cystic fibrosis – analysis of the most common mutation (DF508).
N Engl J Med, 323 (1990), pp. 1517-1522
[6]
R Sharma, VG Florea, AP Bolger, W Doehner, ND Florea, AJS Coats, et al.
Wasting as an independent predictor of mortality in patients with cystic fibrosis.
Thorax, 56 (2001), pp. 746-750
[7]
X Dray, R Kanaan, T Bienvenu, N Desmazes-Dufeu, D Dusser, P Marteau, et al.
Malnutrition in adults with cystic fibrosis.
Eur J Clin Nutr, 59 (2005), pp. 152-154
[8]
G Olveira, A Dorado, C Olveira, A Padilla, G Rojo, E García, et al.
Serum phospholipid fatty acid profile and dietary intake in an adult Mediterranean population with cystic fibrosis.
Br J Nutr, 96 (2006), pp. 343-349
[9]
PB Pencharz, PR Durie.
Pathogenesis of malnutrition in cystic fibrosis, and its treatment.
Clin Nutr, 19 (2000), pp. 387-394
[10]
MM Reeves, S Capra.
Predicting energy requirements in the clinical setting: are current methods evidence based?.
Nutr Rev, 61 (2003), pp. 143-151
[11]
JJ Reilly, TJ Evans, J Wilkinson, JY Paton.
Adequacy of clinical formulae for estimation of energy requirements in children with cystic fibrosis.
Arch Dis Child, 81 (1999), pp. 20-24
[12]
N Vaisman, PB Pencharz, M Corey, GJ Canny, E Hahn.
Energy expenditure of patients with cystic fibrosis.
J Pediatr, 111 (1987), pp. 496-500
[13]
RW Shepherd, RM Greer, SA McNaughton, M Wotton, GJ Cleghorn.
Energy expenditure and the body cell mass in cystic fibrosis.
Nutrition, 17 (2001), pp. 22-25
[14]
VB Marin, S Velandia, B Hunter, V Gattas, O Fielbaum, O Herrera, et al.
Energy expenditure, nutrition status, and body composition in children with cystic fibrosis.
Nutrition, 20 (2004), pp. 181-186
[15]
BJ Rosenstein, GR Cutting.
The diagnosis of cystic fibrosis: a consensus statement. Cystic Fibrosis Foundation Consensus Panel.
J Pediatr, 132 (1998), pp. 589-595
[16]
Sociedad Española para el estudio de la Obesidad (SEEDO).
Consenso SEEDO'2000 para la evaluación del sobrepeso y la obesidad y el establecimiento de criterios de intervención terapéutica.
Nutrición y Obesidad, 3 (2000), pp. 285-299
[17]
DB Jelliffe.
The assessment of nutritional status of the community, WHO, (1996),
[18]
A Alastrué Vidal, A Sitges Serra, E Jaurrieta Mas, P Puig Gris, M Abad Ribalta, A Sitges Creus.
Valoración antropométrica del estado de nutrición: normas y criterios de desnutrición y obesidad.
Med Clin (Barc), 80 (1983), pp. 691-699
[19]
PB Pencharz, M Azcue.
Use of bioelectrical impedance analysis measurements in the clinical manegement of malnutrition.
Am J Clin Nutr, 64 (1996), pp. 485-488
[20]
KR Segal, M van Loan, PI Fitzgerald, JA Hodgdon, TB van Itallie.
Lean body mass estimation by bioelectrical impedance analysis: a four-site cross-validation study.
Am J Clin Nutr, 47 (1988), pp. 7-14
[21]
JA Harris, FG Benedict.
A biometric study of basal metabolism in man, Carnegie Institution of Washington, (1919),
[22]
World Health Organization.
Energy and protein requirements. Report of a joint FAO/WHO/UNU expert consultation, World Health Organization, (1985),
[23]
J Sanchis, P Casan, J Castillo, N González Mangado, L Palenciano, J Roca.
Normativa para la espirometría forzada.
Arch Bronconeumol, 25 (1989), pp. 132-142
[24]
J Roca, J Sanchis, A Agustí Vidal, F Segarra, D Navajas.
Spirometric reference values for a Mediterranean population.
Bull Eur Physiopathol Respir, 18 (1982), pp. 101-102
[25]
M Bhalla, N Turcios, V Aponte, M Jenkins, BS Leitman, DI McCauley, et al.
Cystic fibrosis: scoring system with thin-section CT.
Radiology, 179 (1991), pp. 783-788
[26]
MM Sockrider, PR Swank, DK Seilheimer, DV Schidlow.
Measuring clinical status in cystic fibrosis: internal and reliability of a modified NIH score.
Pediatr Pulmonol, 17 (1994), pp. 86-96
[27]
The Cystic Fibrosis Genetic Analysis Consortium.
[28]
M Welsh, A Smith.
Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis.
Cell, 73 (1993), pp. 1251-1254
[29]
A Picarelli, M Greco, F Di Giovambattista, A Ramazzotti, C Cedrone, E Corazziari, et al.
Quantitative determination of faecal fat, nitrogen and water by means of a spectrophotometric technique: near infrared reflectance analysis (NIRA). Assessment of its accuracy and reproducibility compared with chemical methods.
Clin Chim Acta, 234 (1995), pp. 147-156
[30]
R Barrio Castellanosa, A Cos Blanco, E García García, M Gussinyé Cañadell, F Merino Torres, T Muñoz Calvo.
Consenso sobre diagnóstico y tratamiento de las alteraciones del metabolismo hidrocarbonado en la fibrosis quística.
An Esp Pediatr, 53 (2000), pp. 573-579
[31]
MC Cuerda, A Ruiz, C Moreno, MT Iriondo, C Velasco, I Bretón, et al.
Estudio del gasto energético en la anorexia nerviosa: concordancia entre la calorimetría indirecta y diferentes ecuaciones.
Nutr Hosp, 20 (2005), pp. 371-377
[32]
JW Hart, AR Bremner, SA Wootton, RW Beattie.
Measured versus predicted energy expenditure in children with inactive Crohn's disease.
Clin Nutr, 24 (2005), pp. 1047-1055
[33]
RM Buchdahl, M Cox, C Fulleylove, JL Marchant, AM Tomkins, MJ Brueton, et al.
Increased resting energy expenditure in cystic fibrosis.
J Appl Physiol, 64 (1988), pp. 1810-1816
[34]
A O'Rawe, I McIntosh, JA Dodge, DJ Brock, OA Redmond, R Ward, et al.
Increased energy expenditure in cystic fibrosis is associated with specific mutations.
Clin Sci, 82 (1992), pp. 71-83
[35]
MD Fried, PR Durie, LC Tsui, M Corey, H Levison, PB Pencharz.
The cystic fibrosis gene and resting energy expenditure.
J Pediatr, 119 (1991), pp. 913-916
[36]
JL Tomezsco, VA Stallings, DA Kawchak, JE Goin, G Diamond, TF Scanlin.
Energy expenditure and genotype of children with cystic fibrosis.
Pediatr Res, 35 (1994), pp. 451-460
[37]
ML Richards, PSW Davies, SC Bell.
Energy cost of physical activity in cystic fibrosis.
Eur J Clin Nutr, 55 (2001), pp. 690-697
[38]
SC Bell, MJ Saunders, JS Elborn, DJ Shale.
Resting energy expenditure and oxygen cost of breathing in patients with cystic fibrosis.
Thorax, 51 (1996), pp. 126-131
[39]
L Dorlochter, O Roksund, V Helgheim, K Rosendahl, G Fluge.
Resting energy expenditure and lung disease in cystic fibrosis.
J Cyst Fibros, 1 (2002), pp. 131-136
[40]
VA Stallings, JL Tomezsko, JI Schall, R Mascarenhas, N Stettler, TF Scanlin, et al.
Adolescent developement and energy expenditure in females with cystic fibrosis.
Clin Nutr, 24 (2005), pp. 737-745
[41]
M Closkey, AO Redmond, C McCabe, S Pyper, KR Westerterp, SJ Elborn.
Energy balance in cystic fibrosis when estable and during a respiratory exacerbation.
Clin Nutr, 23 (2004), pp. 1405-1412
[42]
M Castro, A Diamanti, M Gambarara, S Bella, V Lucidi, B Papadatou, et al.
Resting energy expenditure in young patients with cystic fibrosis receiving antibiotic therapy for acute respiratory exacerbations.
Clin Nutr, 21 (2002), pp. 141-144
[43]
R Cancho Candela, M Alonso-Franch, C Calvo Romero.
Resting energy expenditure in cystic fibrosis.
Nutr Hosp, 14 (1999), pp. 153-158
[44]
BS Zemel, DA Kawchak, A Cnaan, H Zhao, TF Scalin, VA Stallings.
Prospective evaluation of resting energy expenditure, nutritional status, pulmonary function, and genotype in chidren with cystic fibrosis.
Pediatr Res, 40 (1996), pp. 578-586

This study was partially funded by a grant from the Andalusian public health service (Consejería de Salud de la Junta de Andalucía, grant 02/150) and by Instituto de Salud Carlos III, Red de Centros de Metabolismo y Nutrición (C03/08).

Copyright © 2007. Sociedad Española de Neumología y Cirugía Torácica (SEPAR)
Archivos de Bronconeumología
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?